Performance Insights on Executing Non-Graphics Applications on CUDA on the NVIDIA GeForce 8800 GTX

Hot Chips 19

Wen-mei Hwu
with
David Kirk, Shane Ryoo, Christopher Rodrigues,
John Stratton, Kuangwei Huang
Overview

• Brief rundown of GeForce 8800 architecture
• Considerations in GPU performance optimization
• Benchmark performance
• Three case studies
 • MRI image reconstruction
 • LBM fluid dynamics simulation
 • H.264 image comparison
• Common performance limitations
• Concluding remarks
GeForce 8800 GPU Computing

Up to 65,535² thread blocks with up to 512 threads each 128 cores, 367 GFLOPS, 768 MB DRAM, 8GB/s total BW

Resources allocated at per-block granularity
Computation Strategy

• We make use of compute resource and hide global memory latency via:
 • Many independent threads
 • Independent instructions within a thread
 • Use of several local memories per Streaming Multiprocessor to reduce latency, avoid redundant global memory accesses and thus bandwidth saturation

• Memory latencies must be overlapped with useful work to achieve good overall performance
 • Global memory latency is at least 200 cycles (estimated)
 • Texture memory accesses and some floating-point operations also have long latencies
Additional Performance Considerations

Developers need to keep additional potential limiters in mind:

• Stalls and bubbles in the pipeline
 • Port conflicts to shared/constant memory
 • Branch divergence

• Shared resource saturation
 • Global memory bandwidth can be saturated
 • Especially if hardware cannot coalesce multiple loads/stores into fewer memory accesses
 • Local memories and registers can also be filled, limiting the number of simultaneously-executing threads
Parallel Programming Experience

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
<th>Source</th>
<th>Kernel</th>
<th>% time</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.264</td>
<td>SPEC ‘06 version, change in guess vector</td>
<td>34,811</td>
<td>194</td>
<td>35%</td>
</tr>
<tr>
<td>LBM</td>
<td>SPEC ‘06 version, change to single precision and print fewer reports</td>
<td>1,481</td>
<td>285</td>
<td>>99%</td>
</tr>
<tr>
<td>RC5-72</td>
<td>Distributed.net RC5-72 challenge client code</td>
<td>1,979</td>
<td>218</td>
<td>>99%</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element modeling, simulation of 3D graded materials</td>
<td>1,874</td>
<td>146</td>
<td>99%</td>
</tr>
<tr>
<td>RPES</td>
<td>Rye Polynomial Equation Solver, quantum chem, 2-electron repulsion</td>
<td>1,104</td>
<td>281</td>
<td>99%</td>
</tr>
<tr>
<td>PNS</td>
<td>Petri Net simulation of a distributed system</td>
<td>322</td>
<td>160</td>
<td>>99%</td>
</tr>
<tr>
<td>SAXPY</td>
<td>Single-precision implementation of saxpy, used in Linpack’s Gaussian elim. routine</td>
<td>952</td>
<td>31</td>
<td>>99%</td>
</tr>
<tr>
<td>TRACF</td>
<td>Two Point Angular Correlation Function</td>
<td>536</td>
<td>98</td>
<td>96%</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-Difference Time Domain analysis of 2D electromagnetic wave propagation</td>
<td>1365</td>
<td>93</td>
<td>16%</td>
</tr>
<tr>
<td>MRI-Q</td>
<td>Computing a matrix Q, a scanner’s configuration in MRI reconstruction</td>
<td>490</td>
<td>33</td>
<td>>99%</td>
</tr>
</tbody>
</table>
Speedup of GPU-Accelerated Functions

- GeForce 8800 GTX vs. 2.2GHz Opteron 248
- 10× speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads
- 25× to 400× speedup if the function’s data requirements and control flow suit the GPU and the application is optimized
- Keep in mind that the speedup also reflects how suitable the CPU is for executing the kernel
Magnetic Resonance Imaging

- 3D MRI image reconstruction from non-Cartesian scan data is very accurate, but compute-intensive
- 416× speedup in MRI-Q (267.6 minutes on the CPU, 36 seconds on the GPU)
 - CPU - Athlon 64 2800+ with fast math library
- MRI code runs efficiently on the GeForce 8800
 - High-floating point operation throughput, including trigonometric functions
 - Fast memory subsystems
 - Larger register file
 - Threads simultaneously load same value from constant memory
 - Access coalescing to produce < 1 memory access per thread, per loop iteration
Computing Q: Performance

CPU (V6): 230 MFLOPS

GPU (V8): 96 GFLOPS
LBM Fluid Simulation (from SPEC)

- Simulation of fluid flow in a volume divided into a grid
 - It’s a stencil computation: A cell’s state at time $t+1$ is computed from the cell and its neighbors at time t
- Synchronization is required after each timestep - achieved by running the kernel once per timestep
- Local memories on SMs are emptied after each kernel invocation
 - Entire data set moves in and out of SMs for every time step
 - High demand on bandwidth
- Reduce bandwidth usage with software-managed caching
 - Memory limits 200 grid cells/threads per SM
 - Not enough threads to completely cover global memory latency

Flow through a cell (dark blue) is updated based on its flow and the flow in 18 neighboring cells (light blue).
H.264 Video Encoding (from SPEC)

- GPU kernel implements sum-of-absolute difference computation
 - Compute-intensive part of motion estimation
 - Compares many pairs of small images to estimate how closely they match
 - An optimized CPU version is 35% of execution time
 - GPU version limited by data movement to/from GPU, not compute
- Loop optimizations remove instruction overhead and redundant loads
- ...and increase register pressure, reducing the number of threads that can run concurrently, exposing texture cache latency
Prevalent Performance Limits

Some microarchitectural limits appear repeatedly across the benchmark suite:

- **Global memory bandwidth saturation**
 - Tasks with intrinsically low data reuse, e.g. vector-scalar addition or vector dot product
 - Computation with frequent global synchronization
 - Converted to short-lived kernels with low data reuse
 - Common in simulation programs

- **Thread-level optimization vs. latency tolerance**
 - Since hardware resources are divided among threads, low per-thread resource use is necessary to furnish enough simultaneously-active threads to tolerate long-latency operations
 - Making individual threads faster generally increases register and/or shared memory requirements
 - Optimizations trade off single-thread speed for exposed latency
Lessons Learned

• Parallelism extraction requires global understanding
 • Most programmers only understand parts of an application
• Algorithms need to be re-designed
 • Programmers benefit from clear view of the algorithmic effect on parallelism
• Real but rare dependencies often need to be ignored
 • Error checking code, etc., parallel code is often not equivalent to sequential code
• Getting more than a small speedup over sequential code is very tricky
 • ~20 versions typically experimented for each application to move away from architecture bottlenecks
Implicitly Parallel Programming Flow

- **For increased composability**
 - Deep analysis w/ feedback assistance
 - Systematic search for best/correct code gen

- **For increased scalability**
 - parallel execution w/ sequential semantics

- **For increased supportability**
 - Debugger

Stylized C/C++ or DSL w/ assertions

Concurrency discovery

Visualizable concurrent form

Code-gen space exploration

Visualizable sequential assembly code with parallel annotations

Parallel HW w/ sequential state gen
To Learn More

- UIUC ECE498AL - Programming Massively Parallel Processors (http://courses.ece.uiuc.edu/ece498/al/)
 - David Kirk (NVIDIA) and Wen-mei Hwu (UIUC) co-instructors
 - CUDA programming, GPU computing, lab exercises, and projects
 - Lecture slides and voice recordings
Thank you! Any Questions?
Some Hand-coded Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H.264</td>
<td>Registers, global memory latency</td>
<td>3,936</td>
<td>20.2</td>
<td>1.5</td>
</tr>
<tr>
<td>LBM</td>
<td>Shared memory capacity</td>
<td>3,200</td>
<td>12.5</td>
<td>12.3</td>
</tr>
<tr>
<td>RC5-72</td>
<td>Registers</td>
<td>3,072</td>
<td>17.1</td>
<td>11.0</td>
</tr>
<tr>
<td>FEM</td>
<td>Global memory bandwidth</td>
<td>4,096</td>
<td>11.0</td>
<td>10.1</td>
</tr>
<tr>
<td>RPES</td>
<td>Instruction issue rate</td>
<td>4,096</td>
<td>210.0</td>
<td>79.4</td>
</tr>
<tr>
<td>PNS</td>
<td>Global memory capacity</td>
<td>2,048</td>
<td>24.0</td>
<td>23.7</td>
</tr>
<tr>
<td>LINPACK</td>
<td>Global memory bandwidth, CPU-GPU data transfer</td>
<td>12,288</td>
<td>19.4</td>
<td>11.8</td>
</tr>
<tr>
<td>TRACF</td>
<td>Shared memory capacity</td>
<td>4,096</td>
<td>60.2</td>
<td>21.6</td>
</tr>
<tr>
<td>FDTD</td>
<td>Global memory bandwidth</td>
<td>1,365</td>
<td>10.5</td>
<td>1.2</td>
</tr>
<tr>
<td>MRI-Q</td>
<td>Instruction issue rate</td>
<td>8,192</td>
<td>457.0</td>
<td>431.0</td>
</tr>
</tbody>
</table>

[HKR HotChips-2007]
Magnetic Resonance Imaging

- MRI code makes effective use of fast memory subsystems
 - Larger register file allows voxel data to be stored in registers
 - Threads load the same values from constant memory in the same cycle
 - 5 load instructions per iteration, but with access coalescing, this produces < 1 memory access per thread, per loop iteration

CPU Code

```c
for(i=0 to max_K) {
    for (j = 0 to max_X) {
        w = 2PI * dot(k[i], x[j]);
        cw = cos(w); sw = sin(w);

        FHD_r[j] += RP_r[i] * cw - RP_i[i] * sw;
        FHD_i[j] += RP_i[i] * cw + RP_r[i] * sw;
    }
}
```

GPU Code

```c
local_x = x[threadIdx.x];
local_r = FHD_r[threadIdx.x];
local_i = FHD_i[threadIdx.x];

for(i=0 to max_K) {
    w = 2PI * dot(k[i], local_x);
    cw = cos(w); sw = sin(w);

    local_r += RP_r[i] * cw - RP_i[i] * sw;
    local_i += RP_i[i] * cw + RP_r[i] * sw;
}

FHD_r[threadIdx.x] = local_r;
FHD_i[threadIdx.x] = local_i;
```
The Compiler/Tools Challenge

“Compilers and tools must extend the human’s ability to manage parallelism by doing the heavy lifting.”

- To meet this challenge, the compiler must
 - Allow simple, effective control by programmers
 - Discover and verify parallelism
 - Eliminate tedious efforts in performance tuning
 - Reduce testing and support cost of parallel programs
Brief Overview of Architectural Features

- Threads are associated into 32-thread warps, which issue concurrently.
- Threads are grouped into blocks of up to 512 threads which share a block of shared memory.
- Hardware resources (thread contexts, registers, shared memory) allocated at per-block granularity.
- Several memories.
Key Performance Considerations

- Architecture provides hardware contexts for many more threads than execution resources
 - Execution throughput is the bottom line
- Categories of performance detractors
 - Stalls and bubbles in the pipeline
 - Port conflicts to shared/constant memory
 - Branch divergence
 - Long-latency operations
 - Need to run enough independent threads on the hardware to cover a thread’s latency with work from other threads
 - Shared resource saturation
 - Global memory bandwidth can be saturated
 - Especially if hardware cannot coalesce multiple loads/stores into fewer memory accesses
Machine Utilization Rules of Thumb

- Global memory load takes at least 200 cycles (estimated)
- Issuing an instruction for one warp takes 4 cycles (32 threads / 8-wide execution units)
- Need to issue at least 50 times (200 cycles / 4 cycles) to cover the latency
 - Issue independent instructions following the load
 - Issue instructions from other warps that are at a different PC
- To furnish enough threads for 24 independent warps, the kernel must be limited to
 - ≤ 10 registers per thread
 - ≤ 21 bytes of shared memory per thread
 - Most kernels we worked with required more resources than this
 - Completely hiding long latency operations is still tricky