

Performance Insights on Executing Non-Graphics Applications on CUDA on the NVIDIA GeForce 8800 GTX

Hot Chips 19

Wen-mei Hwu
with
David Kirk, Shane Ryoo, Christopher Rodrigues,
John Stratton, Kuangwei Huang

Overview

- Brief rundown of GeForce 8800 architecture
- Considerations in GPU performance optimization
- Benchmark performance
- Three case studies
 - MRI image reconstruction
 - LBM fluid dynamics simulation
 - H.264 image comparison
- Common performance limitations
- Concluding remarks

GeForce 8800 GPU Computing

Up to 65,535² thread blocks with up to 512 threads each 128 cores, 367 GFLOPS, 768 MB DRAM, 8GB/s total BW Resources allocated at per-block granularity

Computation Strategy

- We make use of compute resource and hide global memory latency via:
 - Many independent threads
 - Independent instructions within a thread
 - Use of several local memories per Streaming Multiprocessor to reduce latency, avoid redundant global memory accesses and thus bandwidth saturation
- Memory latencies must be overlapped with useful work to achieve good overall performance
 - Global memory latency is at least 200 cycles (estimated)
 - Texture memory accesses and some floating-point operations also have long latencies

Additional Performance Considerations

Developers need to keep additional potential limiters in mind:

- Stalls and bubbles in the pipeline
 - Port conflicts to shared/constant memory
 - Branch divergence
- Shared resource saturation
 - Global memory bandwidth can be saturated
 - Especially if hardware cannot coalesce multiple loads/stores into fewer memory accesses
 - Local memories and registers can also be filled, limiting the number of simultaneously-executing threads

Parallel Programming Experience

Application	Description	Source	Kernel	% time
H.264	SPEC '06 version, change in guess vector	34,811	194	35%
LBM	SPEC '06 version, change to single precision and print fewer reports	1,481	285	>99%
RC5-72	Distributed.net RC5-72 challenge client code	1,979	218	>99%
FEM	Finite element modeling, simulation of 3D graded materials	1,874	146	99%
RPES	Rye Polynomial Equation Solver, quantum chem, 2-electron repulsion	1,104	281	99%
PNS	Petri Net simulation of a distributed system	322	160	>99%
SAXPY	Single-precision implementation of saxpy, used in Linpack's Gaussian elim. routine	952	31	>99%
TRACF	Two Point Angular Correlation Function	536	98	96%
FDTD	Finite-Difference Time Domain analysis of 2D electromagnetic wave propagation	1365	93	16%
MRI-Q	Computing a matrix Q, a scanner's configuration in MRI reconstruction	490	33	>99%

Speedup of GPU-Accelerated Functions

- GeForce 8800 GTX vs. 2.2GHz Opteron 248
- ullet 10× speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads
- 25 \times to 400 \times speedup if the function's data requirements and control flow suit the GPU and the application is optimized
- Keep in mind that the speedup also reflects how suitable the CPU is for executing the kernel

Magnetic Resonance Imaging

- 3D MRI image reconstruction from non-Cartesian scan data is very accurate, but compute-intensive
- 416× speedup in MRI-Q (267.6 minutes on the CPU, 36 seconds on the GPU)
 - CPU Athlon 64 2800+ with fast math library
- MRI code runs efficiently on the GeForce 8800
 - High-floating point operation throughput, including trigonometric functions
 - Fast memory subsystems
 - Larger register file
 - Threads simultaneously load same value from constant memory
 - Access coalescing to produce < 1 memory access per thread, per loop iteration

Computing Q: Performance

9

CPU (V6): 230 MFLOPS

GPU (V8): 96 GFLOPS

LBM Fluid Simulation (from SPEC)

GSRC

- Simulation of fluid flow in a volume divided into a grid
 - It's a stencil computation: A cell's state at time t+1 is computed from the cell and its neighbors at time t
- Synchronization is required after each timestep - achieved by running the kernel once per timestep
- Local memories on SMs are emptied after each kernel invocation
 - Entire data set moves in and out of SMs for every time step
 - High demand on bandwidth
- Reduce bandwidth usage with softwaremanaged caching
 - Memory limits 200 grid cells/threads per SM
 - Not enough threads to completely cover global memory latency

Flow through a cell (dark blue) is updated based on its flow and the flow in 18 neighboring cells (light blue).

H.264 Video Encoding (from SPEC)

- GPU kernel implements sum-of-absolute difference computation
 - Compute-intensive part of motion estimation
 - Compares many pairs of small images to estimate how closely they match
 - An optimized CPU version is 35% of execution time
 - GPU version limited by data movement to/from GPU, not compute
- Loop optimizations remove instruction overhead and redundant loads
- ...and increase register pressure, reducing the number of threads that can run concurrently, exposing texture cache latency

Prevalent Performance Limits

Some microarchitectural limits appear repeatedly across the benchmark suite:

- Global memory bandwidth saturation
 - Tasks with intrinsically low data reuse, e.g. vector-scalar addition or vector dot product
 - Computation with frequent global synchronization
 - Converted to short-lived kernels with low data reuse
 - Common in simulation programs
- Thread-level optimization vs. latency tolerance
 - Since hardware resources are divided among threads, low perthread resource use is necessary to furnish enough simultaneouslyactive threads to tolerate long-latency operations
 - Making individual threads faster generally increases register and/or shared memory requirements
 - Optimizations trade off single-thread speed for exposed latency

Lessons Learned

- Parallelism extraction requires global understanding
 - Most programmers only understand parts of an application
- Algorithms need to be re-designed
 - Programmers benefit from clear view of the algorithmic effect on parallelism
- Real but rare dependencies often need to be ignored
 - Error checking code, etc., parallel code is often not equivalent to sequential code
- Getting more than a small speedup over sequential code is very tricky
 - ~20 versions typically experimented for each application to move away from architecture bottlenecks

To Learn More

- UIUC ECE498AL Programming Massively Parallel Processors (http://courses.ece.uiuc.edu/ece498/al/)
 - David Kirk (NVIDIA) and Wenmei Hwu (UIUC) co-instructors
 - CUDA programming, GPU computing, lab exercises, and projects
 - Lecture slides and voice recordings

Thank you! Any Questions?

Some Hand-coded Results

App.	Archit. Bottleneck	Simult. T	Kernel X	Арр Х
H.264	Registers, global memory latency	3,936	20.2	1.5
LBM	Shared memory capacity	3,200	12.5	12.3
RC5-72	Registers	3,072	17.1	11.0
FEM	Global memory bandwidth	4,096	11.0	10.1
RPES	Instruction issue rate	4,096	210.0	79.4
PNS	Global memory capacity	2,048	24.0	23.7
LINPACK	Global memory bandwidth, CPU-GPU data transfer	12,288	19.4	11.8
TRACF	Shared memory capacity	4,096	60.2	21.6
FDTD	Global memory bandwidth	1,365	10.5	1.2
MRI-Q	Instruction issue rate	8,192	457.0	431.0

Magnetic Resonance Imaging

- MRI code makes effective use of fast memory subsystems
 - Larger register file allows voxel data to be stored in registers
 - Threads load the same values from constant memory in the same cycle
 - 5 load instructions per iteration, but with access coalescing, this produces < 1 memory access per thread, per loop iteration

CPU Code

GPU Code

The Compiler/Tools Challenge

"Compilers and tools must extend the human's ability to manage parallelism by doing the heavy lifting."

- To meet this challenge, the compiler must
 - Allow simple, effective control by programmers
 - Discover and verify parallelism
 - Eliminate tedious efforts in performance tuning
 - Reduce testing and support cost of parallel programs

Brief Overview of Architectural Features

- Threads are associated into 32-thread warps, which issue concurrently
- Threads are grouped into blocks of up to 512 threads which share a block of shared memory
- Hardware resources (thread contexts, registers, shared memory) allocated at per-block granularity
- Several memories

Key Performance Considerations

- Architecture provides hardware contexts for many more threads than execution resources
 - Execution throughput is the bottom line
- Categories of performance detractors
 - Stalls and bubbles in the pipeline
 - Port conflicts to shared/constant memory
 - Branch divergence
 - Long-latency operations
 - Need to run enough independent threads on the hardware to cover a thread's latency with work from other threads
 - Shared resource saturation
 - Global memory bandwidth can be saturated
 - Especially if hardware cannot coalesce multiple loads/stores into fewer memory accesses

Machine Utilization Rules of Thumb

- Global memory load takes at least 200 cycles (estimated)
- Issuing an instruction for one warp takes 4 cycles (32 threads / 8-wide execution units)
- Need to issue at least 50 times (200 cycles / 4 cycles) to cover the latency
 - Issue independent instructions following the load
 - Issue instructions from other warps that are at a different PC
- To furnish enough threads for 24 independent warps, the kernel must be limited to
 - ≤10 registers per thread
 - ≤21 bytes of shared memory per thread
 - Most kernels we worked with required more resources than this

22

Completely hiding long latency operations is still tricky

