[1LLINOIS o GSRC

Gigascale Systems Research Center

Performance Insights on Executing
Non-Graphics Applications on CUDA
on the NVIDIA GeForce 8800 GTX

Hot Chips 19

Wen-mei Hwu
with
David Kirk, Shane Ryoo, Christopher Rodrigues,
John Stratton, Kuangwei Huang

Overview qS RC

* Brief rundown of GeForce 8800 architecture
* Considerations in GPU performance optimization
* Benchmark performance

* Three case studies
* MRI image reconstruction
* | BM fluid dynamics simulation
* H.264 image comparison

e Common performance limitations
* Concluding remarks

ITWVIFRET <Inviba]

GeForce 8800 GPU Computing

Up to 65,5352 thread blocks with up to 512 threads each
128 cores, 367 GFLOPS, 768 MB DRAM, 8GB/s total BW
Resources allocated at per-block granularity

Host

L

Input Assembler

Thread Execution Manager

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

= (| (T (| (| (| (o (I

Computation Strategy qs RC

* We make use of compute resource and hide global
memory latency via:
* Many independent threads
* Independent instructions within a thread

* Use of several local memories per Streaming
Multiprocessor to reduce latency, avoid redundant
global memory accesses and thus bandwidth saturation

* Memory latencies must be overlapped with useful
work to achieve good overall performance

* Global memory latency is at least 200 cycles (estimated)

* Texture memory accesses and some floating-point
operations also have long latencies

IM%T/- n\"DIA 4 Hot Chips 19

Additional Performance Considerations qg RC

Developers need to keep additional potential
limiters in mind:

e Stalls and bubbles in the pipeline
* Port conflicts to shared/constant memory
* Branch divergence

e Shared resource saturation

* Global memory bandwidth can be saturated

* Especially if hardware cannot coalesce multiple
loads/stores into fewer memory accesses

* Local memories and registers can also be filled,
limiting the number of simultaneously-executing
threads

TWIFRE T <nvibia : ot Crie 19

Parallel Programming Experience

Application | Description Source | Kernel |% time
H . 264 SPEC ‘06 version, change in guess vector 34, 81 1 1 94 35%
LBM SPEC ‘96 version, change to single precision 1 481 285 >99%
and print fewer reports)
RC5-72 Distributed.net RC5-72 challenge client code 1 ,979 218 >990%
FEM Finite elemenF modeling, simulation of 3D 1 874 146 99%
graded materials)
RPES Rye Polynomial Equatioq Solver, quantum 1 1 04 281 99%
chem, 2-electron repulsion)
PNS Petri Net simulation of a distributed system 322 1 60 >99%
Single-precision implementation of saxpy, used 0
SAXPY in Linpack’s Gaussian elim. routine 952 31 >99/°
TRACF Two Point Angular Correlation Function 536 98 96%
Finite-Difference Time Domain analysis of 2D 0
FDTD electromagnetic wave propagation 1 365 93 1 6/)
_ Computing a matrix Q, a scanner’s o)
MRI Q configuration in MRI reconstruction 490 33 >99/°

Speedup of GPU-Accelerated Functions GSRC

210 457 316
79 431 263

60_
. E 50+ H Kern.el |
35 a0l B Application
S 9
o J
» 2%
o S 2071
O g
107
0_

H264 LBM RC572 FEM RPES PNS SAXPY TPACF FDID MR-Q MRI-
FHD

* GeForce 8800 GTX vs. 2.2GHz Opteron 248

* 10x speedup in a kernel is typical, as long as the kernel can occupy
enough parallel threads

* 25x to 400x speedup if the function’s data requirements and control
flow suit the GPU and the application is optimized

* Keep in mind that the speedup also reflects how suitable the CPU is for
executing the kernel

TWIFRET <nvibia. 7 R

Magnetic Resonance Imaging GSRC

* 3D MRI image reconstruction from non-Cartesian
scan data is very accurate, but compute-intensive

* 416x speedup in MRI-Q (267.6 minutes on the CPU,

36 seconds on the GPU)
* CPU - Athlon 64 2800+ with fast math library

* MRI code runs efficiently on the GeForce 8800
* High-floating point operation throughput, including
trigonometric functions

* Fast memory subsystems
e Larger register file
* Threads simultaneously load same value from constant memory
* Access coalescing to produce < 1 memory access per thread, per
loop iteration

IM%T/- n\"DIA 8 Hot Chips 19

Computing Q: Performance GSRC

1400

1200 1164 .1 1156.

416x
1000 953.9 9937
800
600
400.1 \
400
267 6 \
200 L
) 0.6
0 T 1

(cpu,dp) V2 (cpu, dp, V3 (cpu, dp, V4 (cpu, sp) V5 (cpu, sp, V6 (cpu, sp, V7 (gpu, sp) V8 (gpu sp,
sse2) sse2, fm) sse2) sse2, fm) fm)

CPU (V6): 230 MFLOPS GPU (V8): 96 GFLOPS

IMW n\"DIA 9 Hot Chips 19

Runtime (minutes)

LBM Fluid Simulation (from SPEC) qs RC

e Simulation of fluid flow in a volume divided
into a grid
* |t’s a stencil computation: A cell’s state at
time t+1 is computed from the cell and its
neighbors at time t
* Synchronization is required after each
timestep - achieved by running the kernel
once per timestep
* Local memories on SMs are emptied after
each kernel invocation

e Entire data set moves in and out of SMs for
every time step

* High demand on bandwidth Flow through a cell (dark
* Reduce bandwidth usage with software- blue) is updated based on its
managed caching flow and the flow in 18

e Memory limits 200 grid cells/threads per SM neighboring cells (light blue).

* Not enough threads to completely cover global
memory latency

ITWVIFRET <Inviba "

H.264 Video Encoding (from SPEC) qs RC

* GPU kernel implements sum-of-absolute difference

computation
* Compute-intensive part of motion estimation

* Compares many pairs of small images to estimate how closely they
match

* An optimized CPU version is 35% of execution time
e GPU version limited by data movement to/from GPU, not compute

* Loop optimizations remove instruction overhead and
redundant loads

e ..and increase register pressure, reducing the number of
threads that can run concurrently, exposing texture cache
latency

ITWVIFRET <Inviba)

Prevalent Performance Limits qs RC

Some microarchitectural limits appear repeatedly across the
benchmark suite:

* Global memory bandwidth saturation
* Tasks with intrinsically low data reuse, e.g. vector-scalar addition
or vector dot product
* Computation with frequent global synchronization
* Converted to short-lived kernels with low data reuse
* Common in simulation programs

* Thread-level optimization vs. latency tolerance

* Since hardware resources are divided among threads, low per-
thread resource use is necessary to furnish enough simultaneously-
active threads to tolerate long-latency operations

* Making individual threads faster generally increases register and/or
shared memory requirements

* Optimizations trade off single-thread speed for exposed latency

IM%T/- n\"DIA 12 Hot Chips 19

Lessons Learned GSRC

* Parallelism extraction requires global understanding
* Most programmers only understand parts of an application

* Algorithms need to be re-designed

* Programmers benefit from clear view of the algorithmic effect on
parallelism

* Real but rare dependencies often need to be ignored

* Error checking code, etc., parallel code is often not equivalent to
sequential code

* Getting more than a small speedup over sequential code is
very tricky

e -20 versions typically experimented for each application to move
away from architecture bottlenecks

ITWVIFRET <Inviba ,

Implicitly Parallel
Programming Flow

Stylized C/C++
or DSL w/ S RC

assertions

Deep analysis

\ 4

\/_

w/ feedback | Human

assistance

For increased
composability

Systematic search
for best/correct
code gen

For increased
scalability

parallel execution w/
sequential semantics

A

y

Visualizable
concurrent form
\/’-_

Visualizable sequential
assembly code with

parallel annotations

| Paralelannotations

For increased Debugger

supportablllty
<A NVIDIA.

14

Hot Chips 19

To Learn More

 UIUC ECE498AL - Programming

Massively Parallel Processors
(http://courses.ece.uiuc.edu/ece498/al/)

* David Kirk (NVIDIA) and Wen-
mei Hwu (UIUC) co-instructors

* CUDA programming, GPU
computing, lab exercises, and
projects

o Lecture slides and voice
recordings

AT — ’ 7 -\
‘ ‘\\\“ 1\;
: .
TWIFRET <nvibia. . .

GSRC

Thank you! Any Questions?

IW Gg nVIDIA 16 Hot Chips 19

Some Hand-coded Results

GSRC

App. Archit. Bottleneck Simult. T| Kernel X App X
H.264 Registers, global memory latency 3,936 20.2 1.5
LBM Shared memory capacity 3,200 12.5 12.3
RC5-72 Registers 3,072 17.1 11.0
FEM Global memory bandwidth 4,096 11.0 10.1
RPES Instruction issue rate 4,096 210.0 79.4
PNS Global memory capacity 2,048 24.0 23.7
LINPACK Chosal memory Banduidth, CELGRY 12,288 19.4 11.8
TRACF Shared memory capacity 4,096 60.2 21.6
FDTD Global memory bandwidth 1,365 10.5 1.2
MRI-Q Instruction issue rate 8,192 457.0 431.0
TNHERIEN-200 hvipia. N .

Magnetic Resonance Imaging GSRC

* MRI code makes effective use of fast memory subsystems
e Larger register file allows voxel data to be stored in registers
* Threads load the same values from constant memory in the same
cycle
* 5 load instructions per iteration, but with access coalescing, this
produces < 1 memory access per thread, per loop iteration

GPU Code
CPU COde lTocal_x = x[threadIdx.x];
local_r = FHD_r[threadIdx.x];
lTocal_1 = FHD_i[threadIdx.x];
for(i=0 to max_K) { _
for (7 = 0 to max_X) { for(i=0 to max_K) {
w = 2PI * dot(k[i], x[j1); w = 2PT * dot(k[i], Tocal _x);
cw = cos(w); sw = sin(w); cw = cos(w); sw = sin(w);
FHD_r[j] += RP_r[i] * cw Tocal_r += RP_r[i] * cw
- RP_i[i] * sw; .~ RP_ALAT ™ swy
FHD_i[j] += RP_i[i] * cw Tocal_i += RP_i[i] * cw
+ RP_r[i] * sw; + RP_r[il * sw;

}

}
}
5 FHD_r[threadIdx.x]
I M me’f’ NVIDIA. 13 FHD_i[threadIdx.x]

lTocal_r;
1oca heilGhips 19

The Compiler/Tools Challenge (o8

“Compilers and tools must extend the human’s ability
to manage para//e//sm by domg the heavy lifting.”

* To meet this challenge, the compiler must

* Allow simple, effective control by programmers
* Discover and verify parallelism

* Eliminate tedious efforts in performance tuning
* Reduce testing and support cost of parallel programs

ITMExET <Anvibia

19 Hot Chips 19

Brief Overview of Architectural Features QS RC

* Threads are associated into 32-thread warps,
which issue concurrently

* Threads are grouped into blocks of up to 512
threads which share a block of shared memory

* Hardware resources (thread contexts, registers,
shared memory) allocated at per-block granularity

e Several memories

ITWVIFRET <Inviba "

Key Performance Considerations GSRC

* Architecture provides hardware contexts for many more
threads than execution resources
* Execution throughput is the bottom line

* Categories of performance detractors

 Stalls and bubbles in the pipeline
* Port conflicts to shared/constant memory
* Branch divergence

* Long-latency operations

* Need to run enough independent threads on the hardware to cover
a thread’s latency with work from other threads

e Shared resource saturation
* Global memory bandwidth can be saturated

* Especially if hardware cannot coalesce multiple loads/stores into
fewer memory accesses

ITWVIFRET <Inviba .

Machine Utilization Rules of Thumb qs RC

* Global memory load takes at least 200 cycles (estimated)

* |ssuing an instruction for one warp takes 4 cycles (32
threads / 8-wide execution units)

* Need to issue at least 50 times (200 cycles / 4 cycles) to

cover the latency
* |ssue independent instructions following the load
* |ssue instructions from other warps that are at a different PC

* To furnish enough threads for 24 independent warps, the

kernel must be limited to
* <10 registers per thread

e <21 bytes of shared memory per thread
* Most kernels we worked with required more resources than this

* Completely hiding long latency operations is still tricky

IM%T/- n\"DIA 22 Hot Chips 19

