
Analytical Performance Prediction for Evaluation and Tuning of
GPGPU Applications

Sara S. Baghsorkhi
University of Illinois at
Urbana-Champaign

bsadeghi@illinois.edu

Matthieu Delahaye
University of Illinois at
Urbana-Champaign

matthieu@crhc.illinois.edu

William D. Gropp
University of Illinois at
Urbana-Champaign
wgropp@illinois.edu

Wen-mei W. Hwu
University of Illinois at
Urbana-Champaign

hwu@crhc.illinois.edu

Abstract
In this paper we present an analytical model to predict the
performance of general purpose applications on a GPU ar-
chitecture. Themodel is designed to provide performance in-
formation to an auto-tuning compiler and assist it narrow the
search to the more promising implementations. This work is
based on the NVIDIAGPUs using CUDA (ComputeUnified
Device Architecture). We analyze each CUDA kernel and
generate the corresponding string model which is a concise
representation of the operations of a kernel. String model for
a kernel summarizes how the kernel exercises major GPU
microarchitecture features. Based on the string model we es-
timate the average execution time of a warp, which is the
SIMD work granularity for CUDA. We validated the per-
formance model using a few data parallel benchmarks that
exploit different microarchitecture features of GPU architec-
ture. The model captures full system complexity and shows
high accuracy in predicting the performance trend of dif-
ferent optimized implementations. We also describe our ap-
proach to extract the performance model automatically.

Keywords GPGPU, performance analysis

1. Introduction
Graphics processors traditionally had highly specialized pro-
gramming models and interfaces that limit the ability of
developers to map general-purpose applications to these
platforms (Owens et al. 2005). With the introduction of
NVIDIA’s Compute Uniform Device Architecture (CUDA)
(NVIDIA 2007) and CUDA-enabled GPUs, developers now
have the programming and architectural features to quickly
port programs to a platform with a massively-parallel, GPU-
based co-processor (Nickolls et al. 2008). The intent of our
work is to model the GPU organization and features for an-
alyzing the performance of general purpose applications.
In this paper we focus on CUDA-enabled NVIDIA GPUs.
However, the core techniques and concepts can be applied
to other GPU architectures as well.

1.1 Motivation
The amount of effort required to maximize the performance
of programs on GPU architectures can be relatively high.
Due to specific resource restrictions and threading model of
the GPU the optimization space can also be discontinuous. A
study by (Ryoo et al. 2008) demonstrated very large config-
uration space even for relatively small kernels. The results
also concluded that the difference in performance between
some manually-optimized variants of code and the optimal
configuration was 17%. Furthermore, upgrades to the hard-
ware requires the reapplication of the optimizations.
Empirical performance tuning (Qasem et al. 2004; Whal-

ley 2005; Pan and Eigenmann 2006b) is a well-known tech-
nique for solving the above pitfalls. There has also been
significant amount of research to develop models and frame-
works for predicting performance of applications (Karkha-
nis and Smith 2004; Marin and Mellor-Crummey 2004;
Zhong et al. 2003; Clement and Quinn 1993; Triantafyllis
et al. 2003; Pan and Eigenmann 2006a), but it mostly ap-
plies to non-GPU architecture.
In this paper we have developed a performance model to

help prune the search space of GPU kernel optimizations.
Our goal is to use our model as a supporting module for
an automated optimizing compiler for GPU architecture. We
also intend to export useful programmer’s insights about
program such as constraints on parameter values, to the
performancemodel. Figure 1 displays the layout of different
modules involved in such a compiler framework.

1.2 Performance Factors
GPUs supports the Single-Program Multiple-Data (SPMD)
model. Threads within certain granularities (thread blocks),
share their data and synchronize their actions. During ex-
ecution threads within a block are grouped into warps (32
parallel threads for the current NVIDIA GPUs), which are
the granular multi-threading scheduling units1. Threads in a
warp are executed in SIMD mode and warps can be inter-
leaved with hardware multi-threading to tolerate intra-warp

1 Threads in a thread block are numbered along the x direction first and
gathered sequentially into warps.

Figure 1. A Compiler Framework Based on Model-guided
Empirical Tuning

stalls which enables overlap of memory latency with use-
ful computation. In this section we briefly review major mi-
croarchitecture features that are considered for analyzing the
performance of a kernel.

1. The general philosophy of GPUs for tolerating memory
latency is to generate and maintain thousands of threads.
This is in contrast with the use of large caches to hide
memory latencies in CPU designs. A high compute-to-
memory-access ratio is necessary to avoid saturation of
memory channels.

2. To conserve global memory bandwidth, when the threads
of a half-warp execute a global load, the loads are con-
solidated if they meet constraints necessary for the hard-
ware to perform memory coalescing. This is similar to
loading an entire cache line from memory versus loading
one word at a time.

3. Working memory within a group of cores consists of
software-managed cache memory called shared mem-
ory. These are high fan-out, low latency, limited-capacity
memories which are partitioned among blocks of threads.

4. Shared memories have a limited number of ports, so
appropriate thread ordering helps preserve performance
by avoiding port and bank conflicts.

5. CUDA is based on the SPMD model in general and
the SIMD mode among subsets of threads. Although
this is a cost-effective hardware model for exploiting
data parallelism, it can be ineffective for algorithms that
require diverging control flow decisions in data-parallel
sections.

1.3 Contributions
Previous studies on performance estimation (Liu et al. 2007;
Govindaraju et al. 2006; Fatahalian et al. 2004) and tuning
(Jiang and Snir 2005) for GPU were constrained by the pro-
gramming environment and the necessity of mapping algo-
rithms to existing GPU features. A more recent work on tun-
ing (Ryoo et al. 2008) uses Pareto-optimal curves to prune
optimization space. It introduces efficiency (a flat instruction
count) and utilization (a measure of how much of a warp ex-
ecution time is spent to do useful work compared to the wait
time for long latency memory operations) metrics. The pro-
posed performancemodel in this work captures performance
effects of all major GPU microarchitecture features.
We revisited the program dependence graph (PDG) (Fer-

rante et al. 1987), an intermediate program representation,
for the purpose of performance evaluation. The PDG pro-
vides a coherent framework to explicitly represent control
and data dependences for each program operation. Based
on the PDG representation, we can identify computationally
related operations in the program that exercise key perfor-
mance factors. We also explain how to perform symbolic
evaluation on these fragments of code efficiently. The com-
bination of a proper program representation and efficient
symbolic evaluation enables a compiler framework to cap-
ture performance impact of control flow divergence and cer-
tain features of memory hierarchy system.
Another major difference between this work and other

related work is that we measure each performance factor
in isolation and later combine them to model the overall
performance. As a result our model properly reflects the
interaction between different performance factors.

2. The String Model
To estimate the performance we define an abstract model of
computation (we call it string model) for each GPU kernel.
The string model of a kernel is a sequence of the tokens that
are shown in Table 1. Each token represents the operational
semantics of an instruction or set of instructions along with
the expected cost of its execution in the granularity of a
warp.
Token Cn

i represents a set of i non-blocking computa-
tional instructions. It also infers that on average n clock cy-
cles are required to execute all instances of that block of
instructions in a warp. Current NVIDIA GPUs group eight
streaming processors into a streaming multiprocessor (SM)
that executes the 32 SIMD instruction in a warp by clocking
the streaming processors four times. Therefore, we assume
that the cost of issuing 32 SIMD instruction in a warp is four
clock cycles 2. If Cn

i is not protected by any condition, it is
guaranteed to be executed by all warps of a kernel. Assum-
ing enough warps are scheduled on a streaming multipro-
cessor to hide pipeline stalls we have n = 4 × i, otherwise
2 Such implementation dependent information can be provided to the per-
formance model through a hardware specification file.

the pipeline latency that is not tolerated should be counted
towards n. If Cn

i is conditionally executed by a subset of
threads, n is adjusted according to the fraction of warps for
which the guarding condition is satisfied.

Mn
k is the long latency memory read k (a global memory

access). The cost for the long latency memory operations of
a kernel is calculated by Equation 1, based on the difference
between the average number of cycles required to load all
the data from global memory (average memory cycles) and
the average number of cycles required to perform all non-
memory computation (average compute cycles) in a thread
block. In Equation 1,NUMmem stands for average number
of global memory operations in a thread block; CY Cmem

and CY Ccompute are average memory and compute cycles
respectively.3 When CY Cmem is less than CY Ccompute, if
execution of different warps are interleaved, memory band-
width is not the critical limiting factor. In that case, n would
be the the number of cycles required to issue 32 memory op-
erations in a warp. Otherwise, the cost is adjusted according
to the second term in equation 1 to compensate for the num-
ber of memory cycles that are not covered by the compute
cycles of the kernel.

n = max(4,
CY Cmem − CY Ccompute

NUMmem
) (1)

Unlike other string tokens, aGk token does not represent
an actual instruction. It indicates that at this point threads
in a warp are potentially blocked due to a data dependency
to the memory load operation k. To estimate how much of
the global memory latency of memory operation k is already
covered, we introduce two kernel specific parametersNwarp

and NBCavg . Number of active warps,Nwarp, is the maxi-
mum number of warps that can be assigned to each stream-
ing multiprocessor in GPU without violating local resource
usage (shared memory, registers and other GPU hardware
limits). To compute the average number of non-blocking cy-
cles for a warp, NBCavg , we sum up the cost of all string
tokens in string model of a kernel, excluding long latency
memory tokens M and M̄ . The result is divided by the dy-
namic number of blocking tokens (Ms and Bs). On average
each of theNwarp active warps can useNBCavg cycles be-
fore execution is back to a warp that has issued a long latency
memory operation. If the memory latency cycles (assumed
to be 250 cycles for NVIDIA GPUs) is not totally covered
by (Nwarp − 1)×NBCavg , the non-tolerated latency is in-
cluded in calculating the average latency of a warp.
String tokens Sn and S̄n correspond to shared memory

load and store operations. Cost n includes the average num-
ber of cycles that is required to resolve potential shared
memory bank conflicts. Token B indicates a synchroniza-

3 Some of the memory operations and computational instructions in a kernel
may only be executed by a subset of threads. As a result, CY Cmem and
CY Ccompute are average number of cycles instead of total number of
cycles.

tion point in the kernel with a fixed instruction issue cost of
4 clock cycles.

3. Constructing the String Model
Our compiler front-end analyzes the source code and trans-
lates it into a program dependence graph (PDG) represen-
tation. We perform traditional scalar analysis and optimiza-
tions such as induction variable detection and substitution
based on an SSA(Cytron et al. 1991) form on the PDG. As a
result, program expressions are represented by symbolic ex-
pressions in terms of thread ID, block ID and other induction
variables. Our framework currently provides closed form ex-
pressions for linear and geometric inductive variables. More
complex classification of expressions can be supported in the
future (Gerlek et al. 1995; Wolfe 1992).
Our framework is also capable of ignoring redundant

computation4 using a simple version of partial evaluation for
statements and value numbering (Marten Kongstad 2004).
Other information such as maximum number of registers
required by each thread or the amount of shared memory
used by a thread block can also be inferred automatically
but it is not supported at this time. We currently rely on
NVIDIA’s compiler for this information.
Figure 2 shows the program dependence graph after ap-

plying scalar optimization for the partial kernel code of pre-
fix sum scan that is shown below.5

n = 2 * threadID + 1;
/*Load data into shared memory*/
...
for(stride = 2; stride <= 256; stride =<< 1){
if(((n+1) % stride == 0)

shared[n]+=shared[n - stride >> 1];
syncthreads();

}

The code is specialized for thread block size of 128
for simplification of our discussion. Two shared memory
reads and a shared memory write in each iteration of the
loop are under the control of the condition (n + 1) ≡ 0
(mod stride).
Rectangular nodes in Figure 2 represent statements in the

program. Conditions (predicates) that control execution of
a set of instructions (their descendent nodes) have diamond
shape. Region nodes, with an oval shape, summarize the set
of control condition for a node or set of nodes (Ferrante et al.
1987). Regions also summarizes information such as the av-
erage execution weight of the their descendent nodes (usu-
ally set to the default value of 1). For example, instructions
in a loop should be weighted proportional to the trip count
of the loop and therefore each loop region is augmented with
the loop trip count,e.g.,W = 8 in the PDG example of Fig-

4 These are computations that are eventually eliminated by the back-end
optimizing compiler.
5We simplified and grouped some of the PDG nodes for the ease of expla-
nation.

String Token Description Steps to Compute Execution Time of A Warp

Cn
i

A block of i non-blocking continuous computational
instructions that would take at least n clock cycles to
execute.

Clock+=n

M̄n
A long latency memory write instruction with an asso-
ciated cost of n cycles due to memory bandwidth limi-
tation.

Clock+=n

Mn
k

The long latency memory load instruction k (250+ cy-
cles) with an associated cost of n cycles due to memory
bandwidth limitation.

MemDone[k]=Clock+250, MemStart[k]=Clock, Clock+=n

Gk

A pseudo-instruction which has a data dependency on
the earlier long latency memory load operation k.

CoveredLatency = (Nwarps-1)×NBCavg + (Clock-MemStart[k])
MemWait[k]=max(0,MemDone[k]-Clock-CoveredLatency)
Clock+=MemWait[k]

Sn, S̄n
The low latency shared memory load/store instruction
with a cost of n cycles. Potential bank conflict penalty
is included in n.

Clock+=n

B A synchronization point in the program. Clock+=4

Table 1. Algorithm to Estimate Per-Warp Latency

ure 2. This implies that each warp executes the instructions
under the loop region 8 times.
In case of a branch divergence, proper weight should be

assigned to the two descendent region nodes of the predicate
that controls the divergence. For example, the weight that is
assigned to the True descendent region of a predicate node
indicates the fraction of warps that satisfy the condition and
therefore execute the instructions under the True region.
Divergence can occur at the level of thread blocks, i.e.,

different thread blocks take different execution paths but all
warps in a block still follow the same path. If the condition
is expressed in terms of affine expression of block ID, an
operator (comparison or modulo), and a constant term, our
framework calculates the precise weight for the two descen-
dent regions of the predicate node. Otherwise, our tool as-
signs weight of zero to both descendent regions of the pred-
icate node to estimate an upper bound and in another pass
it sets both weights to 1 to estimate a lower bound for the
performance. We intend to integrate the programmer’s in-
sight into our tool ,in form of annotations, to generate tight
bounds on the performance.
Divergence may also happen at a lower level among

warps in a thread block. For example, in the partial pre-
fix sum scan kernel only subsets of the threads in a block
are active during each step of execution. Furthermore, these
threads are distributed throughout all warps of the thread
block for most steps. Therefore, the number of cycles that is
required to resolve shared memory bank conflicts is different
for each step (If a shared memory access is not dependent
on a condition that includes thread ID in x direction, seri-
alization effect can be easily determined by checking the
coefficient of the thread ID in the x direction).
In a case similar to the partial kernel code shown above,

we symbolically evaluate the conditions and array index
expressions that are thread ID dependent. Knowing which
threads are active during a step of computation, we deter-
mine the number of active warps and pattern of shared mem-

ory accesses for each step. Based on this information we
compute the average weight for computational instructions
(cc) and the average bank conflict penalty for shared mem-
ory accesses (cs).6
Divergence within a thread block can also make the de-

lays introduced by register dependencies blatant. These de-
lays can be ignored if there are enough warps to hide the
intra-warp pipeline latencies. Although a kernel may have
enough active warps initially, some of these warps can be
turned off for steps with sparse computation pattern. As we
determine the number of active warps during symbolic eval-
uation of a fragment of code, we also estimate the available
instruction level parallelism (ILP) within a thread (based on
the data dependencies expressed in corresponding regions of
PDG). Based on this information we compute the exposed
latency cycles for each step. The average cost for computa-
tional instructions (cr) is a weighted average of latencies for
all steps.

3.1 Efficient Symbolic Evaluation
In this section we propose an efficient approach to sym-
bolic evaluation of conditions in the program that have the
triplet form of 〈At + B, op, g(i)〉 (similar approach can
be adopted to evaluate array index expressions). For brevity,
we consider one dimensional thread blocks with the size
of T . Due to hardware limitations, T is restricted to 512
(threads). Variable t stands for the thread ID in the affine
expression At + B. Operator op can be a comparison or
modulo operator. Special patterns of bitwise operations can
also be translated into a modulo operation, e.g., expressions
t&(2i − 1) = 0 and t ≡ 0 (mod 2i) are equivalent.
Function g(i) is a linear (g(i) = Ci + D) or geomet-

ric (g(i) = CDi) function of the induction variable i ∈
{1, 2, ..., I}7. Without loss of generality, we restricted our

6 A similar approach is used to compute memory cycles in case of global
memory accesses being guarded by conditions on thread ID in x direction.
7 It is important to note that I can be an arbitrary large number.

discussions to the comparison operator≤ and A, B, C, D ∈
N. We also assume g(i) = Ci + D. Conclusions about the
case of g(i) = CDi can be derived similarly.
The following three mutually exclusive cases apply based

on the relationship between T and I and the operator op.

1. I ≤ T and 〈At + B,≤, g(i)〉.

We solve g(i) for each i ∈ {1, 2, ..., I}. Let g(i′) =
Ci′ + D for 0 ≤ i′ ≤ I . We have At + B ≤ Ci′ + D
that gives t ≤ Ci′+D−B

A . All ts that satisfy 0 ≤ t ≤
Ci′+D−B

A
are valid thread IDs. Therefor total number of

symbolic evaluation steps is equal to:
I∑

i=1

⌊Ci + D − B

A

⌋

+ 1 ≈
C

A
I(I + 1) +

D − B + A

A
I

The right-hand side expression is expressed in terms of
program constants and is proportional to cost of sym-
bolically solving g(i) for every 0 ≤ i ≤ I . We com-
pute the value of right-hand side expression in advance.
If the computed cost is less than a predefined threshold,
we symbolically evaluate the condition and the segment
of the code under its influence. Otherwise, we follow a
lower-bound upper-bound approach that was discussed in
Section 3.

2. I > T and 〈At + B,≤, g(i)〉.

Let α ∈ R such that α satisfies the inequality I
T ≤ αA

C .
We solve At + B for each t ∈ {0, 2, ..., T − 1}. Let
At′ + B ≤ Ci + D for 0 ≤ t′ < T . As a result
At′+B−D

C ≤ i ≤ I and the total number of computation
steps is given by:

T−1
∑

t=0

I −
⌈At + B − D

C

⌉

+ 1

After replacing I with αAT
C

in the above sum we have:
T−1
∑

t=0

αAT

C
−

⌈At + B − D

C

⌉

+ 1 ≈

T (αAT − B + D + C)

C
−

AT (T − 1)

2C
(2)

It is important to note that we have iterated over thread
IDs. To measure shared memory bank conflicts and
thread divergence correctly, for each thread ID, values
of i that have invoked its execution are saved. Later we
replay these i values and compute divergence and bank
conflict effects. As a result the total cost will be twice the
value of expression (2).
All terms in expression (2) except α are constants. By
setting this expression equal to half of the cost threshold
we can determine the maximum α. Maximum value of α

Thread ID (t′) 2t′+2 Prime Factor Combinations (P) Solutions i = log2
P
2

0 2 {2} {0}
1 4 {2, 4} {0, 1}
2 6 {2, 3, 6} {0}
3 8 {2, 4, 8} {0, 1, 2}
4 10 {2, 5, 10} {0}
5 12 {2, 3, 4, 6, 12} {0, 1}
6 14 {2, 7, 14} {0}
7 16 {2, 4, 8, 16} {0, 1, 2, 3}
. . . .
. . . .
. . . .
127 256 {2, 4, 8, 16, 32, 64, 128, 256} {0, 1, 2, 3, 4, 5, 6, 7}

Table 2. Symbolic Evaluation Example

determines the largest I for which the system can afford
symbolic evaluation.

3. 〈At + B, %, g(i)〉.

We solve At + B for each t ∈ {0, 2, ..., T − 1}. Let
(At′ + B) ≡ 0 (mod Ci + D) for 0 ≤ t′ ≤ T which
implies Ci + D is some combination of prime factors of
At′ + B. If AT + B is not a very large number we can
store combinations of prime factors of all number less
that AT + B in a lookup table in order to retrieve them
efficiently. Let P be a combination of prime factors of
(At′ + B). Factor P is equal to Ci + D iff P−D

C is an
integer and 0 ≤ P−D

C
≤ I . This makes t′ a solution that

satisfies the condition. The total number of steps to test
all values of t is bounded by:

T−1
∑

t=0

⌊At + B

2

⌋

≈
AT (T − 1)

4
+

BT

2

Similar to case 2, this method requires two passes to
collect performance information.

The thread ID dependent condition in the partial kernel
code that we discussed earlier is similar to case 3. Table 2
demonstrates the symbolic evaluation steps for some of the
thread IDs of a thread block. Notice that g(i) = 2 × 2i is a
geometric function in this case. Since 2 × 128 + 2 = 258 is
a small number, we can efficiently look up combinations of
prime factors of 2t′ + 2 for each t′ ∈ {0, 1, 2, ..., T − 1}.
If 2t′ + 2 has a prime factor combination P , such that
i = log2

P
2
is an integer and 0 ≤ i ≤ 7, thread t′ is active

during step i of the computation.
Table 2 shows all computation steps during which thread

t′ is active for highlighted PDG nodes in Figure 2. We sort
the solutions by computation steps as shown in Table 3.
Given the thread IDs that are active during each step of
computation, we can determine the number of active warps
and pattern of accesses to shared memory banks in each step.
Values that are computed in third and fifth columns of Table
3 are used to compute execution weight of the True region
of the predicate node (cc) and average bank conflict penalty
for shared memory accesses under the predicate node (cs).

Computation Step
(i)

Thread ID (t′) Number of Warps with at
Least One Active Thread

Bank Conflicts Cycles to Resolve Shared
Memory Bank Conflicts

0 {0, 1, 2, ..., 127} 4 two-way 4 × 8
1 {1, 3, 5, 7, ..., 127} 4 two-way 4 × 8
2 {3, 7, ..., 127} 4 two-way 4 × 8
3 . 4 two-way 4 × 8
4 . 4 two-way 4 × 8
5 . 4 no conflicts 4 × 4
6 . 2 no conflicts 2 × 4
7 {127} 1 no conflicts 1 × 4

Total 27 188
Total

Total Warps cc = 27
32

= 0.84 cs = 188
32

= 5.88

Table 3. Replay of Active Threads in Each Step

Figure 2. A Simple Program Dependence Graph

To identify the thread ID dependent effects we perform a
preorder walk on the PDG. As we reach predicate nodes with
a thread ID dependent condition, we symbolically evaluate
the condition and memory access expressions through effi-
cient techniques discussed in this section. During this pro-
cess we augment descendent regions of predicate nodes with
information that maps a step of computation (value of induc-
tion variable) to the set of thread IDs that are active during
that step. This reduces the cost of symbolic evaluation for
nested conditions.

3.2 Generating the String Model
To generate the string model we perform a postorder walk on
the PDG of a kernel after performing symbolic evaluation on
desired segments of PDG. As we visit each region node, we
incorporate the associated weight with each region in calcu-
lation of the cost of descendent computational instructions.
A postorder walk of the PDG in Figure 2 derives the

following string model for the partial kernel code that we
discussed earlier.

C
24

6 S
cs

C
16×cc

4
S

cs
C

4×cc

1
S̄

cs
B

4
C

8

2
︸ ︷︷ ︸

8 times

Coefficient cc is proportional to the average number of times
that at least one thread in a warp executes a block of instruc-
tions while cs accommodates the average serialization affect
of shared memory bank conflicts for each warp. Values for
cc and cs are computed through symbolic execution of the
PDG nodes that are shown in gray in Figure 2.
After replacing the computed values of cc (0.84) and cs

(5.88) for a block size of 128, an average warp latency can
be calculated by adding the average cost of each token based
on the algorithm described in Column 3 of Table 1. Given
the average warp latency, estimating the total execution time
of a kernel is straight forward.

4. Evaluation
In this section we show how the performance model can
be used to select the optimal configurations for three data-
parallel benchmarks. We used NVIDIA GeForce 8800 GPU
for our experiments.
The first benchmark, dense matrix multiplication, is rep-

resentative of many tiled algorithms.We will discuss several
versions of matrix multiplication and their sustained perfor-
mance when multiplying two square matrices of 4K×4K el-
ements.We begin with a simple version of matrix multiplica-
tion which exercises the global memory bandwidth of GPU.
This matrix multiplication kernel creates a thread for each
result element for the multiplication, for a total of 4K×4K
threads. These threads loop through a sequence that loads
two values from global memory, multiplies them, and accu-
mulates the value. Figure 4(a) shows the core loops of the
dot-product computation kernel; starting values for indexA
and indexB are determined by block and thread coordinates.
This kernel loads same array input elements multiple times
by different threads. Another pitfall with this version is that
global memory accesses to array A are not coalesced. In
GeForce 8800, global memory delivers the 86.4 GB/s mem-
ory bandwidth only when the global memory accesses are
coalesced within a half-warp. GeForce 8800 can fetch data
in a single 64-byte or 128-byte transaction (NVIDIA 2007).
If the memory transaction cannot be coalesced, then a sep-
arate memory transaction will be issued for each thread in
the half-warp. As a result, the performance penalty for non-
coalesced memory accesses to array A in Figure 4(a) is es-

Kernel String Model
Matrix Multi-
ply - Initial C44

11 C
8
2M

260
1 M

260
2 G1G2C

16
4

︸ ︷︷ ︸

4096 times

C8
2M̄260

3

Matrix Multi-
ply - 16×16X
Tiled

C48
12 M̄4C4

1
︸ ︷︷ ︸

X times

C16
4 C4

1
︸︷︷︸

X times

C16
4 C12

3
︸︷︷︸

X times

c82M4
1 G1S̄4

︸ ︷︷ ︸

X times

M
4
2G2S̄

4
C

8
2B

4
1C

4
1 C16

4 S4 S4C8
2

︸ ︷︷ ︸

X times

C12
3

︸ ︷︷ ︸

16 times

B
4

︸ ︷︷ ︸

256 times

M̄4

︸︷︷︸

X times

Prefix Sum
Scan - Initial C16

4 M4
1 G1S̄4M4

2 G2S̄4B4C24
6 C

24
6 S

cs
C

16×cr×cc

4
S
cs

C
4×cr×cc

1
S̄
cs

B
4
C

8
2

︸ ︷︷ ︸

log T+1 times

C8
2S4× 32

T C
8×cr′

×
32

T

2 M̄4× 32

T S̄4× 32

T B4C4
1 C

24
6 S

cs
C

16×cr×cc

4
S
cs

C
4×cr×cc

1
S̄
cs

S̄
cs

B
4
C

8
2

︸ ︷︷ ︸

log T+1 times

S4C8
2M̄4S4M̄4

Prefix Sum
Scan - Reduced
Divergence and
Bank Conflicts

C16
4 M4

1 C16
4 G1S̄4M4

2 C16
4 G2S̄4B4C16

4 C
16
4 C

16×cr×cc

4
S
4×cc

C
16×cr×cc

4
S
4×cc

C
4×cr×cc

1
S̄
4×cc

C
16×cr×cc

4
B

4
C

8
2

︸ ︷︷ ︸

log T+1 times

C8
2S4× 32

T C
8×cr′

×
32

T

2 M̄4× 32

T S̄4× 32

T B4C16
4 C

16
4 C

16×cr×cc

4
S
4×cc

C
16×cr×cc

4
S
4×cc

C
4×cr×cc

1
S̄
4×cc

S̄
4×cc

C
8
2B

4
C

8
2

︸ ︷︷ ︸

log T+1 times

S4C8
2M̄4S4M̄4

Table 4. String Models for Some of the Benchmark Kernels

(a) Initial and Tiled Kernels (b) Zoomed for Tiled Kernels

Figure 3. Predicted versus Measured Execution Times for Matrix Multiply Kernels

timated to be 16. In other words, for accessing one word
of array A GeForce 8800 issues a 16 word global memory
transaction. This results in an increase in the average number
of memory cycles, CY Cmem. Based on Equation 1, the cost
of each memory operation is estimated to be of 260 cycles
which is reflected in the string model representation for this
kernel in Table 4.
Next, we implemented a tiled version of the the initial

kernel that takes advantage of shared memory to enhance
data sharing between threads computing nearby results. We
chose tile sizes of 16×16, 16×32, 16×64, 16×128, 16×192
elements, to be executed by a thread block. During exe-
cution, the threads work within two input tiles that stride
across 16 contiguous rows, 16, 32, 64, 128 or 192 columns

in the input matrices. A total of 256 threads are created and
each tied to a specific coordinate in a tile. Each thread loads
the elements corresponding to its coordinates from the input
tiles into shared memory. They then synchronize to estab-
lish consistency, which enables each thread to load all its in-
puts from shared memory. Finally, the threads calculate the
partial dot product for the inputs in shared memory within
a 16×X-iteration loop. Figure 4(b) shows the loops of the
kernel for tile size of 16×16 while the second row in Ta-
ble 4 displays the corresponding string model for 16×16X
tile sizes. For the tiled kernels, global memory loads are re-
duced by a factor of 16, 32, 64, 128 or 192 respectively.
As a result the measured performance improves as the tile
size increases. Figures 3(a) and 3(b) show the predicted and

Ctemp = 0;

for(i = 0; i < widthA;
i++)

{
Ctemp += A[indexA]*

B[indexB];
indexA++;
indexB +=widthB;

}

C[indexC] = Ctemp;

(a)

Ctemp = 0;
for (...){

shared float As[16][16];
shared float Bs[16][16];

As[ty][tx] = A[indexA];
Bs[ty][tx] = B[indexB];
indexA += 16;
indexB += 16 * widthB;
syncthreads();

for (i = 0; i < 16; i++){
Ctemp += As[ty][i] *

Bs[i][tx];
}
syncthreads();

}
C[indexC] = Ctemp;

(b)

Figure 4. Partial Kernel Codes forMatrixMultiplication.(a)
Initial Version (b) 16x16 Tiled Version

measured performance numbers for matrix multiply kernels
next to each other. Based on these results, the proposed per-
formance model perfectly captures global memory perfor-
mance factors such as data reuse and coalescing effect.
The second benchmark we use is a power-of-two batch

Fast Fourier Transform (FFT) which is based on Stockham
formulation. We used parts of the pseudo-code provided in
(Govindaraju et al. 2008) for implementation of FFT kernels.
Figure 6(a) shows the partial kernel code for radix-R FFT
that loads data from global memory, computes an R-point
FFT and writes the results back to global memory. The
kernel is invoked several times and during each iteration of
the outer loop values from R different FFTs are combined
together to generate a larger size FFT. We set T , the number
of threads per block, to be N

R
, where N is the input array

size. For the first few invocation of this kernel writes to the
global memory arrayA cannot be coalesced which decreases
the performance.
Figure 6(b) shows another version of the kernel that we

implemented to improve the data reuse by keeping interme-
diate results in shared memory. This version also writes the
results in proper order to global memory to avoid poor global
memory coalescing.
For this experiment we compute 1024 FFTs of size 256.

We tried different radix sizes of 2, 4, and 16. Larger radices
reduce the total number of iterations that is required to com-
bine the the results of smaller size FFTs. Meanwhile, larger
radix sizes also consume more GPU resources. For exam-
ple, both global and shared memory versions for radix-16
increase use of registers substantially. Consequently array
local is spilled to global memory resulting in an increase in
global memory traffic. Spilling array local into global mem-
ory also increases the number of stall points in the kernel;
and the average non-blocking cycles, NBCavg , is reduced
accordingly. Number of active warps, Nwarps, is also re-
duced as each thread uses more registers. Reduction in both
NBCavg and Nwarps makes global memory latency and
pipeline delay blatant for radix-16 kernel. These effects are

n = 2 * threadID + 1;
/*Load data into
shared memory*/
...
//use 256 threads
shared[n]+=
shared[n-1];
syncthreads();

//use 128 threads
if(((n+1) % 4 == 0)
shared[n]+=
shared[n-2];
syncthreads();

//use 64 threads
if(((n+1) % 8 == 0)
shared[n]+=
shared[n-4];
syncthreads();

...
(a)

#define PAD(x) ((x)+(x)/16)
/*Load data into
shared memory*/
...
//use 256 threads
shared[PAD(2*threadID+1)]+=
shared[PAD(2*threadID)];
syncthreads();

//use 128 threads
if(threadID < 128)
shared[PAD(4*threadID+3)]+=
shared[PAD(4*threadID+1)];
syncthreads();

//use 64 threads
if(threadID < 64)
shared[PAD(8*threadID+7)]+=
shared[PAD(8*threadID+3)];
syncthreads();

...
(b)

Figure 5. Partial Kernel Codes for Prefix Sum Scan.(a) Ini-
tial Version (b) Reduced Branch Divergence and Bank Con-
flicts

reflected in both predicted and measured performance num-
bers in Figure 7.
The last benchmark that we use is the prefix sum scan ker-

nel, which computes partial sums of all prefixes of an array.
It is related to reductions such as summation and min/max
computation. The parallel scan algorithm used here is a
divide-and-conquer process, due to the lack of communica-
tion support across thread blocks in CUDA. We have chosen
this kernel to verify the performance model against control
flow divergence, shared memory bank conflicts and synchro-
nization overhead resulting from load imbalance. For large
arrays, 4M elements in this work, the algorithm runs iter-
atively(Blelloch 1990), which is a common tactic in GPU
programming. One kernel computes partial sums in a tiled
manner, then a second kernel propagates the partial sums
through the array. We will focus on the first kernel, as it oc-
cupies the majority of execution time and has a more inter-
esting behavior from perspective of this work.
The prefix sum scan kernel illustrates the performance

penalty incurred when threads within a warp take different
branch paths. Unlike the other two benchmarks, computa-
tion is not distributed uniformly to threads. In mapping the
algorithm to parallel threads, the tree-like structure of the
computation has been divided into discrete steps containing
different amounts of computation and separated by barrier
synchronizations. Operations within a step are statically as-
signed to threads. Threads determine what to do by com-
puting branch conditions and array indices from their thread
ID. How computation is assigned to threads and the resulting
branch behavior affects performance.
We start with a simple version of the scan kernel (Init)

where thread t is responsible for the computation that pro-
duces array element 2t + 1. Part of this kernel is shown with
loops unrolled in 5(a), to illustrate the control flow and array
index computation in the kernel. For a thread block size of T ,

the kernel loads data from global memory, computes partial
sums in log T +1 steps (3 are shown), propagates the partial
sums to all array elements in another log T + 1 steps, and
saves the results to global memory. Subsets of the threads in
a block are turned off for each step of execution, but in this
organization the active threads are distributed throughout all
warps for most steps of execution, leading to high value of
cc in Table 4 for initial version of prefix sum scan kernel.
For example, the last if-clause in Figure 5(a) restricts n to be
one less than a multiple of 8, and consequently all threads
that execute the following line have thread IDs that are one
less than a multiple of 4.
By reassigning computation to different threads, we can

group threads that take the same control flow path into the
same warp, eliminating branch divergence except during the
steps where fewer than one warp of threads runs. The new
version (Div) has a lower value of cc but as the regrouped
threads issue more simultaneous accesses to the same shared
memory bank, cs increases from the initial version to the
reduced divergence version.
We removed the shared memory bank conflicts for both

of the above versions. The array layout is changed by insert-
ing one unused element between every 16 array elements.
After the array layout is changed the performance rises for
the kernel with reduced branch divergence (Div Bank).
This kernel is shown in Figure 5(b). For the initial ver-
sion performance degrades after the array layout is changed
(Init Bank) as the effect of reducing cs is less than the
cost of adding a few extra address computation instructions
in each step of computation.
Figure 8 summarizes the predicted and measured perfor-

mance numbers for different versions that we discussed. For
each kernel configuration we tried thread block sizes of 64,
128, 256 and 512. In general for all kernels when a thread
encounters a barrier, it waits at the barrier instruction until
all threads in the thread block have synchronized. After each
synchronization, fewer threads are called on to do work. In
fact, half the threads become superfluous after each step of
computation in the first half of the scan kernel, yet they still
must consume execution cycles to participate in barrier syn-
chronization. As a result, thread blocks of larger sizes are
expected to pay more penalty for synchronization in these
kernel. In addition, with larger thread blocks fewer indepen-
dent thread blocks are active simultaneously. As the number
of active threads decreases during the last stages of tree-like
computation, Nwarps drops below the level that is required
to hide the pipeline latency. The results in Figure 8 verify
the accuracy of the proposed performance model to capture
divergence and thread-ID-dependent effects.

5. Conclusions and Future Work
We have presented a compiler-based approach to application
performance modeling on GPU architectures. Our approach
is specially attractive as it efficiently composes accurate

Figure 7. Predicted versus Measured Execution Times for
FFT Kernels

Figure 8. Predicted versus Measured Execution Times for
Prefix Sum Scan Kernels

performance information from most common C constructs.
In cases that it cannot determine the precise performance
for a kernel, it provides lower and upper bounds for the
performance. This model allows a compiler to determine the
optimality of parallel kernel configurations without running
all the variations. This approach has resulted in drastically
reduced kernel tuning time in our compilation process.
We validated our performance model for matrix multi-

ply, prefix sum scan and FFT data parallel benchmarks. Our
evaluation shows that there is good agreement between pre-
dicted and observed performance rankings for the various
tuning versions of these kernels and the model captures the
effect of all major performance factors for GPU architecture.
We are in the process of fully automating the extraction of
the analytical performance model from the program depen-
dence graph of CUDA source code, which will enable us to
validate the model on a much wider range of kernels. We
also plan to quantify the reduction of compile time by us-
ing our analytical performance model as opposed to running
the various tuning versions in our auto-tuning compilation
process.

//Global Memory Version

for(s = 1; s < N; s*= R){
//FFT kernel invocation here
float2 local[R];
n = blockID * N + threadID;
//Load data from global memory
for(i = 0; i < R; i++){
indexA = n + i*T;
local[i] = A[indexA] *
(cos(i*W_N), sin(i*W_N));

}
/*Perform radix-R FFT on
values loaded to local*/

...
//Store data to global memory
n = (n/s)*s*R + n%s;
for(i = 0; i < R; i++){
indexA = n + i*s;
A[indexA] = local[i];

}
//FFT kernel terminates here

}

//Shared Memory Version

float2 local[R];
shared work[2*N];

n = blockID * N + threadID;
//Load data from global memory
for(i = 0; i < R; i++){
indexA = n + i*T;
local[i] = A[indexA];

}

//radix-R FFT of size N
for(s = 1; s < N; s*= R){
for(i = 0; i < R; i++)
local[i] *=
(cos(i*W_N), sin(i*W_N));

/*Perform radix-R FFT on
values loaded to local*/

...
syncthreads();

//Shared Memory Continued

nd = (n/s)*s*R + n%s;
for(i = 0; i < R; i++){
j = nd + i*s;
(work[j],work[j+N]) =
local[i];

}
syncthreads();

ns = (n/T)*N + n%T;
for(i = 0; i < R; i++){
j = ns + i*T;
local[i] =
(work[j],work[j+N]);

}
}
//Store data to global memory
for(i = 0; i < R; i++){
indexA = n + i*T;
A[indexA] = local[i];

}

Figure 6. Partial Kernel Codes for radix-R FFT.(a) Global Memory Version (b) Shared Memory Version

References
Guy E. Blelloch. Prefix sums and their applications. Technical report,
Synthesis of Parallel Algorithms, 1990.

MJ Clement and MJ Quinn. Analytical performance prediction on multi-
computers. In Proceedings of the 1993 ACM/IEEE conference on Super-
computing, pages 886–894, 1993.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.,
pages 451–490, 1991.

K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency
of gpu algorithms for matrix-matrix multiplication. In HWWS ’04:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 133–137, 2004.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., pages 319–349, 1987.

Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction
variables: Detecting and classifying sequences using a demand-driven
ssa form. ACM Transactions on Programming Languages and Systems,
pages 85–122, 1995.

Naga K. Govindaraju, Scott Larsen, Jim Gray, and Dinesh Manocha. A
memory model for scientific algorithms on graphics processors. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomput-
ing, page 89, 2006.

Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and
John Manferdelli. High performance discrete fourier transforms on
graphics processors. In SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pages 1–12, 2008.

Changhao Jiang and Marc Snir. Automatic tuning matrix multiplication
performance on graphics hardware. In PACT ’05: Proceedings of the
14th International Conference on Parallel Architectures and Compila-
tion Techniques, pages 185–196, 2005.

T.S. Karkhanis and J.E. Smith. A first-order superscalar processor model.
Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on, pages 338–349, 2004.

Weiguo Liu, Wolfgang Muller-Wittig, and Bertil Schmidt. Performance
predictions for general-purpose computation on gpus. In ICPP ’07: Pro-
ceedings of the 2007 International Conference on Parallel Processing,
page 50, 2007.

Gabriel Marin and John Mellor-Crummey. Cross-architecture performance
predictions for scientific applications using parameterized models. In
SIGMETRICS ’04/Performance ’04: Proceedings of the joint interna-

tional conference on Measurement and modeling of computer systems,
pages 2–13, 2004.

Marten Kongstad. An Implementation of Global Value Numbering in the
GNU Compiler Collection with Performance Measurements, 2004.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda. In SIGGRAPH ’08: ACM SIGGRAPH
2008 classes, pages 1–14, 2008.

NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Program-
ming Guide: Version 1.0. NVIDIA Corporation, June 2007.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger,
Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose
computation on graphics hardware. In Eurographics 2005, State of the
Art Reports, pages 21–51, August 2005.

Z. Pan and R. Eigenmann. Fast and Effective Orchestration of Compiler
Optimizations for Automatic Performance Tuning. In Code Generation
and Optimization, 2006. CGO 2006. International Symposium on, pages
319–332, 2006a.

Zhelong Pan and Rudolf Eigenmann. Fast, automatic, procedure-level
performance tuning. In PACT ’06: Proceedings of the 15th international
conference on Parallel architectures and compilation techniques, pages
173–181, 2006b.

Apan Qasem, Ken Kennedy, and John Mellor-crummey. Automatic tun-
ing of whole applications using direct search and a performance-based
transformation system. In In Proceedings of the Los Alamos Computer
Science Institute Second Annual Symposium, pages 183–196, 2004.

Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi,
Sain-Zee Ueng, John A. Stratton, and Wen-mei W. Hwu. Program
optimization space pruning for a multithreaded gpu. In CGO ’08:
Proceedings of the sixth annual IEEE/ACM international symposium on
Code generation and optimization, pages 195–204, 2008.

Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and
David I. August. Compiler optimization-space exploration. In In Pro-
ceedings of the international symposium on Code generation and opti-
mization, pages 204–215, 2003.

David B. Whalley. Tuning high performance kernels through empirical
compilation. In ICPP ’05: Proceedings of the 2005 International Con-
ference on Parallel Processing, pages 89–98, 2005.

Michael Wolfe. Beyond induction variables. SIGPLAN Not., pages 162–
174, 1992. ISSN 0362-1340.

Yutao Zhong, Steven G. Dropsho, and Chen Ding. Miss rate prediction
across all program inputs. In PACT ’03: Proceedings of the 12th In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques, page 79, 2003.

