
1

Data Layout Transformation for Structured-Grid
Codes on GPU

I-Jui Sung, Wen-Mei Hwu
University of Illinois at Urbana-Champaign

{sung10, w-hwu}@uiuc.edu

Abstract—We present data layout transformation as an ef-
fective performance optimization for memory-bound structured-
grid applications for GPUs. Structured grid applications are a
class of applications that compute grid cell values on a regular
2D, 3D or higher dimensional regular grid. Each output point
is computed as a function of itself and its nearest neighbors.
Stencil code is an instance of this application class. Examples
of structured grid applications include fluid dynamics and heat
distribution that solve partial differential equations wi th an
iterative solver on a dense multidimensional array.

Using the information available through variable-length array
syntax, standardized in C99 and other modern languages, we
have enabled automatic data layout transformations for struc-
tured grid codes with dynamic array sizes. We first present
a formulation that enables automatic data layout transforma-
tions for structured grid code in CUDA. We then model the
DRAM banking and interleaving scheme of the GTX280 GPU
through microbenchmarking. We developed a layout transforma-
tion methodology that guides layout transformations to statically
choose a good layout given a model of the memory system.
The transformation which distributes concurrent memory re-
quests evenly to DRAM channels and banks provides substantial
speedup for structured grid application by improving their
memory-level parallelism.

I. I NTRODUCTION

Structured grid applications [1] are a class of applications
that calculate grid cell values on a regular (structured in
general) 2D, 3D or higher dimensional grid. Each output
point is computed as a function of itself and its nearest
neighbors, potentially with patterns more general than a fixed
stencil. Examples of structured grid applications includefluid
dynamics and heat distribution that solve partial differential
equations (PDEs) with an iterative solver on dense multidi-
mensional arrays. When parallelizing such applications, the
most common approach is to spatially partition the grid cell
computations into fixed sized chunks, usually as planes or
cuboids, and assign those chunks to workers e.g. threads, MPI
ranks, or through OpenMP parallel for loops.

However, the underlying memory hierarchy may not interact
in the most efficient way with a given decomposition of
the problem. Data accesses may not fully exploit parallelism
among memory controllers, interleaved DRAM banks, ele-
ments within a DRAM burst (pipelined access of a subset
of DRAM columns in a row). Furthermore, the full details of
the memory hierarchy are often too obscure or complex for a
typical application programmer to make the best use of them.
Even for exceptional cases where the programmer does know
how to transform the data layout to fit the memory system,

Fig. 1: Data Layout Transforms for Structured Grid Codes

performing the transformation manually is very tedious, results
in less readable code, and must be transformed again every
time a new platform is targeted.

Currently, programming languages such as C and FOR-
TRAN rigidly define the layout of natural arrays, and allow
usages that rely on that natural layout, such as casting to a
linear array or deterministically aliasing “out-of-bounds” ac-
cesses to real elements. Therefore, programmers opting to use
automatic transformations on arrays must be subject to more
stringent interfaces that insulate the source code from changes
in the layout. However, implementing arrays of transformable
layout using a new language data type or C++-style classes
both complicate the language and may contain undesirable
overheads for accessing the most performance-critical data
structure of the application. The data layout optimization
proposed in this paper addresses these problems by defining a
layout-neutral form of array allocation and access, and defining
transformations that allow us to adapt the linear representation
to best utilize the memory-level parallelism (MLP) of the
underlying memory hierarchy.

Figure 1 depicts our procedure of data layout transforma-
tion, using a modern GPU as an example memory system.
The input is a kernel in layout-neutral form, which can be
considered a restricted form of variable-length arrays, clearly
denoting the size of each array dimension, with array access
restricted to FORTRAN-like form. Knowledge of the execu-
tion model is then used to determine the relationships and
ranges of array indices likely to be concurrently requested. For
each array of interest, an optimization problem is formulated
and solved based on the estimated number of concurrent
instances of each array index with distinct values, with the

2

solution determining the desired layout. A code generation
pass emits transformed code with array access expressions
converted to flattened array accesses using transformed lay-
outs.

The rest of this paper explains our methodology and results
in detail. Section II provides an overview of iterative PDE
solvers. Section III discusses related work in data layout
transformations. Section IV-B formulates logical and phys-
ical representations of arrays, and defines the data layout
transformations we consider using this formulation. Section
V discusses how we obtained a memory address interleaving
scheme of the DRAM controller through micro-benchmarking,
and derive an optimized layout from the program and ex-
ecution model. Section VI presents our experiment results,
followed by some concluding remarks in Section VII.

II. COMMON ACCESSPATTERNS OFPDE SOLVERS ON

STRUCTURED GRIDS

Although there are many numerical methods that deal with
PDEs, there are only a few data access patterns among the
most prevalent methods solving these problems on structured
grids. The structured grid often comes from discretizing physi-
cal space with Finite Difference Methods [2] or Finite Volume
Methods [3], while solutions based on Finite Element Methods
[2] often result in irregular meshes.

Many numerical methods solve PDEs through discretization
and linearization. The linearized PDE is then solved as a large,
sparse linear system [4]. For large problems, direct-solution
methods are often not viable: practical approaches are almost
exclusvely iterative-convergence methods.

Iterative techniques like Jacobi method and Gauss-Seidel
(including those with Successive Overrelaxation) are often
used as important building blocks for more advanced solvers
like multigrid [5]. Those methods are both instances of stencil
codes, whose stencils can be expressed as a weighted sum of
the cell and nearest neighbors in the grid. The major difference
in terms of access patterns is that Gauss-Seidel methods
typically apply cell updates in an alternating checkerboard
style. Adjacent elements are never updated at the same sweep;
two separate, serialized sweeps over the red and black cells
performs one whole iteration update.

The lattice-Boltzmann method (LBM) [6], a particle-based
method that was mainly used in computational fluid dynamics
problems, was recently extended as a general PDE solver [7].
The LBM is also an iterative method applied to structured
grids. The cell update rules for the LBM are divided into two
stages that update multiple grid cell properties (i.e. distribution
functions of particles close to different edges or surfacesof
the grid cell.) The intra-cell stage (called collide) and inter-
cell stage (called stream) combined perform one iteration’s
update [8]. The stream stage accesses the nearest neighbors
of the current cell, while the collide stage’s inputs are entirely
local to the current cell.

III. R ELATED WORK

Since stencil codes and LBM applications are often memory
bandwidth-bound, many approaches have focused on enhanc-
ing the memory system performance for these applications.

However, most of them focus on increasing the cached reuse of
data loaded from memory. For traditional cache-based memory
hierarchies, most methods do so by transforming the traversal
order of array elements by loop tiling at cache line size [9],
[10].

Lu et al.’s recent work applies data layout transformation
for cache locality in NUCA (non-uniform cache architecture)
chip multiprocessors [11]. They employ similar data layout
transformations, but their work targets localizing accesses to
local L2 cache bank, rather than exploiting MLP in multi-
cores connect to multi-channel memory controllers through
interconnect, and only considers sequential loop indices to
optimize cache locality.

Stencil codes are a subset of structured grid applications
that have been studied extensively, and optimized for locality
on many platforms, including the GPU platform we use in
this paper [12]. Because there is no traditional cache or direct
control over the relative execution order of threads, most GPU-
specific transformations for stencil codes aim to enhance reuse
of shared data across neighboring cells using a pipeline-like
approach, e.g. Datta et al. [12].

All of the methods mentioned in this section thus far
improve how efficiently data is used or reused in the on-
chip cache of the system. However, these approaches are not
always applicable or sufficient. For example, LBM within one
timestep does not contain any data reuse [8], and even once
reuse is exploited, some stencil codes may still be performance
bound by off-chip bandwidth. Applications in such situations
could potentially still gain significant performance improve-
ment by using MLP-oriented optimizations.

In terms of the underlying DRAM memory model, most
of the work described above only considered the latency of
hitting or missing in the data cache. However, for a massively
parallel system, balancing DRAM traffic across controllers
can be important. Datta et al. [12] take into consideration the
affinity of DRAM controller and processor cores in NUMA
architectures using an affinity-aware memory allocator. Asfar
as we know, there is no software-based approach to balancing
workloads for the multi-channel, interleaved DRAM con-
trollers employed in modern parallel architectures, although
according to our micro-benchmarks, 7X performance loss
could occur in extreme cases.

For GPUs, we know of no previous work applying data
layout transformation to structured-grid code other than simple
array-of-structure to structure-of-array transformation [13],
which exploits pipeline parallelism within DRAM bursts (i.e.
coalescing). Our data layout transformation further exploits
concurrency in multi-channel and interleaved DRAM bank
organization.

Various works [14]–[17] have proposed hardware optimiza-
tions for DRAM controllers working toward uniform access
latency and fairness, some parallelism aware [15], [16]. All
of them focus on scheduling DRAM requests under certain
workloads, therefore no attention is given to potentially less
costly software approaches that transform the distribution of
memory addresses requested. Also, those approaches only
balance among memory banks under the same controller, while
several controllers are are often present in modern systems.

3

IV. T HE DATA LAYOUT TRANSFORMATION FOR

STRUCTURED GRID C CODE

In C, an array is a collection of values identified by integer
indices with a language-defined memory layout. To enable
layout transformation, we must first separate the use of indices
from the linear layout. We first present a formalization of
arrays, layouts, and layout transformation. Then, we describe
how a compiler can recognize the information necessary to
perform effective layout transformations efficiently, noting
that the most reliable method is available only when the
programmer specifies array accesses in FORTRAN-like mul-
tidimensional indexes. Variable-length array syntax, a recently
standardized feature of the C language, enables that form of
index expression even for arrays of all kinds, including those
whose size is not statically known. Finally, a data flow analysis
is designed to help deduce data layouts for subscripted pointer
accesses.

A. Grids and Flattening Functions

Definition 1. An n-dimensional array G is characterized by
an index space that is a convex, rectangular subspace ofNn

and type T.

An array element is identified by a vector of integers called
an index vector. Without loss of generality, for the index vector
~I of an array element,Ii ∈ [0, Dimi) where Dimi ∈ N,
Dimi > 0 is the i-th element of thedimension vectorof G.
T is the type of all elements in G.

Definition 2. An injective function FF:Nn → N is a flattening
function for an n-dimensional array G, if this function is
defined for all valid array element index vectors.

A flattening function defines a linearization of coordinates
of elements in G. When that integer is interpreted as the offset
for addressing an element from the beginning of the memory
space reserved for the array, then this flattening function
defines the memory layout of the array. We require FF to be
injective: it should map every valid index vector to a unique
value. An FFf explicitly forbids many-to-one mapping, and
thus f−1 is defined andf−1(f(~I)) = ~I for a valid index
vector~I. With these restrictions, a flattening function uniquely
defines a memory layout and vice-versa; we use these terms
interchangeably in the remaining text.

B. Row-major layout and layout transformations

Theorem 1. For an n-dimensional array with index vector
~I and dimension vector~D with 0 ≤ Ii < Di, ∀(0 ≤ i <
n), functionRML(~I, ~D) =

∑n−1
i=0 Ii

∏i−1
j=0 Dj is a flattening

function that reduces~I to an integer.

Proof: Given the integeri = RML(~I, ~D) for an element
with index vector~I of an n-dimensional array G with dimen-
sion vector~D, we can computeIi by (i/

∏i−1
j=0 Dj) mod Di. It

follows that0 ≤ Ii < Di. Since this applies to any legitimate
array cell in G, it is clear that the functionRML is injective,
and is defined for all valid indices of G, soRML is a flattening
function.

Fig. 2: An Example of Layout Transformation

C, and languages derived from it, define the layout of arrays
as row-major order. For example, theRML for the array
a[3][4] would beI0 + I1× 4. For an expressiona[j][i], RML

computesi + j ∗ 4. The inverse functionRML−1 (x) returns
a vector~I = {xmod4, x/4}.

We can define some transformations ofRML with regards
to an n-dimensional array G with index vector~I and dimension
vector ~D:

Swap: Interchange indexi and j (i 6= j). This transforma-
tion creates a new index vector~I ′ from ~I and a new
dimension vector~D′ from ~D. ~I ′ and ~D′ are then used
as inputs to the transformed FF:

∑n−1
i=0 I ′i

∏i−1
j=0 D′

j

where:

~I′ = {I′k, k ∈ N, k < n}; I′
k

=

8

>

<

>

:

Ik for k /∈ {i, j}

Ij for k = i

Ii for k = j

~D′ = {D′

k, k ∈ N, k < n}; D′

k
=

8

>

<

>

:

Dk for k /∈ {i, j}

Dj for k = i

Di for k = j

Intuitively, this transformation swapsIi and Ij

as well asDi and Dj . Considering multi-element
structures as another array dimension, the common
structure-of-arrays to array-of-structures transforma-
tion [13] is an instance of (repeated) application
of the swap transform on neighboring dimensions,
shifting the structure offset index to the highest
position in the index vector. Repeated applications of
swapping are required in general when it is desired
to shift a dimension along some direction, so that the
relative order of other dimensions is not changed.

Split: Split dimensioni into T -sized tiles,0 ≤ T < Di.
This transformation creates a new index vector~I ′ and
a new dimension vector~D′, which are inputs to the
transformed FF.~I ′ and ~D′ are created by dividingIi

into Ih, Il andDi into Dh, Dl, whereIh = Ii mod
T , Il = ⌊Ii/T ⌋ andDh = ⌈Di/T ⌉, Dl = T .

Swapping can be considered a “relabeling” of some in-
dices and dimensions. Splitting is diving one index into two,

4

with the lower index being a single-digit, baseT number.
This introduces ”padding” into the original array dimension,
bringing it to an even multiple ofT . Since the new dimen-
sion is rounded up to the nearest multiple ofT , it allows
all valid indices in both portions of a split index to be
uniquely mapped. It follows that these two operations are
closed on FF. Practically, we only consider and implement
split operations forT = 2k, so the transformed FF can be
expressed in fast bit operations rather than slow general integer
modulo operations. Applying a split FF with power-of-two
tile size on index vector~I w.r.t. an array A is abbreviated as
A[In−1]....[Ii(log

2
(Di):k+1)][Ii(k:0)]...[I1][I0]. Figure 2 shows

a layout tiling example that transforms an access to array
A[Dj][Di] from A[j][i], i.e. RMLA, to A[jlog 2(Di):4][i][j3:0].
First the dimensionj is split into jH andjL without actually
changing the order of elements in memory, only padding
the grid to some multiple of24 × Di elements. Then the
dimensionsi and jL are swapped, which also changes the
order of elements in memory.

C. The Layout-Neutral Form and LN Function

Definition 3. LN is a functionS → {∪n∈NGn × Nexpr
n ×

Nexpr
n} ∪ {ǫ}, whereS is the set of array-accessing expres-

sions in a program P and the tripleGn ×Nexpr
n ×Nexpr

n is
the corresponding layout neutral form, whereGn is the set of
n-dimensional array objects in P, and the twoNexpr

n are the
dimension vector and the index vector respectively.

Nexpr is the union of natural numbers (N) and expressions
whose type is ofN. ǫ indicates the case where the triple is not
defined for a given expression.

In other words, LN maps an expressione to either a triple
(g ∈ Gn, ~D ∈ Nexpr

n, ~I ∈ Nexpr
n), where g, ~D and ~I

are respectively ann-dimensional array, its dimension vector,
and an index vector corresponding to the cell accessed by
e, or ǫ when there is no such triple fore. In practice, the
compiler must be able to map every array access expression
of a particular array object to such a triple in order to insert
the FF specific to that layout into each access expression. We
loosely define a particular piece of code as “layout-neutral”
if the compiler has all the information necessary to arbitrarily
define the layout of the desired arrays.

D. Deriving Layout-Neutral Form from C Code

For C programs, we can derive layout neutral form by an
informally specified LN from the type of operation of a given
expression, as shown below:

• Fully-qualified array subscripting: we can derive~D
straightforwardly from the declaration of the array, and
~I from the expression. Consider the following C code
snippet:

f l o a t a [D] [D] ;
S1 : a [k+3 j] [i] = 1 . 0 f ;

The layout neutral form ofa[k+3j][i]:

LN (a[k + 3j][i]) =

8

>

<

>

:

(a, (D, D), (i, k + 3j)) for 0 ≤ i < D,
0 ≤ k + 3j < D

ǫ otherwise

• Pointer dereferencing: we derive~I by applying the in-
verse ofRML on the offset to the base of the array. An
example would be:

f l o a t b [1 0] [1 0] [1 0] ; i n t x ;
S1 : f l o a t ∗p = b ;
S2 : ∗ (p + x) = 0 ; / / e = ∗ (p + x)

The layout neutral form of expressione:

LN (e) =

8

>

<

>

:

(b, (10, 10, 10), ~I), ~I = RML−1
b

(p + x − b)

0 ≤ Ii < 10, 0 ≤ i < n

ǫ otherwise

• Other operations:ǫ

Conceptually the layout transformation process is to replace
array accessing expressione with FF (LN(e)). For those
expressions with pointer-derefencinge:*(p+off), general
we would substitutee with FF (RML−1 (off)). However,
since the run-time cost of applyingRML−1 to all array-
accessing expressions might be prohibitive, it is generally
preferred to derive layout-neutral form using the first method.
That is, one implements all expressions accessing allocated
multidimensional arrays using only fully-qualified subscripts
in all dimensions to access elements.

E. Layout Transformations as Extended Types

Types in programming languages specify the information
necessary for code to interpret and operate on the data in-
stances of that type. The layout of an array is an implicit
part of an array’s type, typically defined by the language.
To transform the layout of a particular array, excluding other
arrays, we must essentially change that array’s type, and
propagate that change in type information through the program
to ensure that all parts of the program accessing that array
do so correctly. While this could be accomplished without
compiler transformation by making the flattening function an
indirect function associated with each array, these methods
introduce undesirable overheads compared to static inlining
of the flattening function.

Therefore, we present algorithms for propagating the im-
plicit layout type information statically through a program,
identifying the pointer references that access the objectswith
extended types. The proposed usage scenario is that the user
specifies through annotation which grid should the compiler
perform automatic layout transformation, without specifying
actual layout, and the compiler decides actual layout that
works best on the given grid for the given architecture, and
propagates this layout information through this analysis.

We shall describe this analysis as a monotonic dataflow
analysis; in this framework a data-flow analysis is represented
as a semilattice and a set of transfer functions. For this
problem, the semilattice is (Ψ, ∧), where each element in the
semilattice is a function:Ψ : P → L∪{UT ,⊥}. L is a set of
tuples representing the layout, where(n ∈ N, Nn, Nn → N)
denote dimension, dimension vector, and flattening function
respectively.P is the set of pointer variables in the program,
UT stands foruntransformedand ⊥ means incompatible
respectively. An untransformed pointer indicates that thedata
structure pointed by this pointer usesRML as its flattening

5

function; an incompatible pointer however indicates that this
pointer may point to at least two data structures with incom-
patible flattening functions. Two flattening functionsFF 1 and
FF 2 are compatible (expressed asFF 1 == FF 2) if and only
if for all legitimate dimension vector~D and index vector~I,
FF 1(~D, ~I) = FF 2(~D, ~I). That is, the FF for afloat array
can be compatible with theRML for a long array as long as
their element sizes are the same. This allows transforming the
layout of some structured-grid code, in which non-float typed
elements are accessed through type-casted grid base pointer.

The set of transfer functionsf ∈ F ; f : L → L are created
from the type of operations in the flow graph, as shown in
Table I; the meet operation of two functionsm, n ∈ Ψ is
defined in Table II. In the table, the binary relationship== for
two tuples{l1 = (n1, D1 ∈ Nexpr

n1 , FF1), l2 = (n2, D2 ∈
Nexpr

n2 , FF2)} ∈ L exists if and only ifn1 = n2 andD1 =
D2 andFF 1 == FF 2 .

TABLE I: Transfer Functions

Operation Type Transfer functionf(µ) in the form of
f(µ) = ν with ν(w) = µ(w)∀(w 6=
p1) and ν(p1) = ..., where w ∈
P ;µ, ν ∈ Ψ

No definition involving any
pointer variables

ν(p1) = µ(p1) (Identity function)

p1 = p2; p1 and p2 are
pointers

ν(p1) = µ(p2).

p1 = p2 + t; p1 andp2
are pointers andt is of inte-
ger type

ν(p1) = ⊥ if µ(p1) 6= UT elseUT

Declaring a pointerp ν(p1) = UT

Declaring a pointerp to an
n-dimensional gridG with a
dimension vectorDV

ν(p1) = (n, DV,RML)

Apply layout transformation
lt to the data structured
pointed byp1

ν(p1) = lt(µ(p1)) where lt is a
layout transformation.

TABLE II: Meet Operation

l1 UT ⊥

l2 if l1 == l2 then
l1 else⊥

⊥ ⊥

UT ⊥ UT ⊥
⊥ ⊥ ⊥ ⊥

V. D IRECTING DATA LAYOUT TRANSFORMATION

This section describes how to derive the data layout to best
match an application data structure to the MLP supported
by the underlying memory hierarchy. Intuitively, the spaceof
all possible layouts could be very large. In this section we
demonstrate how an analytical model of the memory hierarchy
and static analysis of the program can efficiently lead to an
effective choice of layout. We derive the analytical model for
an NVIDIA GeForce 280 GTX as an example, and use the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5
12

 1
02

4

 1
53

6

 2
04

8

 2
56

0

 3
07

2

 3
58

4

 4
09

6

 4
60

8

 5
12

0

 5
63

2

 6
14

4

 6
65

6

 7
16

8

 7
68

0

 8
19

2

 8
70

4

 9
21

6

 9
72

8

 1
02

40

 1
07

52

 1
12

64

 1
17

76

 1
22

88

 1
28

00

M
ill

io
n

D
R

A
M

 T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Stride (words)

Fig. 3: Effective memory bandwidth v.s. strides in bytes
between requests from from many single-threaded blocks on
GTX280. Bandwidth is shown in millions of transactions per
second, and strides are in increments of 64 bytes.

computational model of that GPU to analyze the expected
program execution and the concurrent requests likely to be
generated.

A. Benchmarking and Modeling Memory System Characteris-
tics

A good layout should thus be able to exploit:

• Parallelism across different DRAM channels
• Parallelism across banks within a DRAM channel
• Pipeline parallelism within a DRAM burst

while preventing channel/bank imbalance by avoiding large
strides among requests issued closely in time. In order to
perform good data layout for structured grid applications,it
is necessary to benchmark the underlying memory hierarchy
to model the achieved memory bandwidth as a function
of the distribution of memory addresses of concurrent re-
quests. Previous work [18] has benchmarked the GPU to
obtain memory latency versus stride in a single-thread setting.
However, since the class of applications we are targeting is
mostly bandwidth-limited, we must determine how effective
bandwidthvaries given access patterns acrossall concurrent
requests. First, each memory controller will have some pattern
of generating DRAM burst transactions based on requests.
The memory controller could be only capable of combining
requests from one core, or could potentially combine requests
from different cores into one transaction. In our example,
the GPU memory controller implements the former, with the
CUDA programming manual [19] defining the global memory
coalescing rule, which specifies how transactions are generated
as a function of the simultaneous requests from the vector
lanes of one SM.

Next, we must define our model on how bits in memory
address steer interleaving among memory channels, DRAM
banks, and any other parallel distribution structures thatin-
creases the number of requests that can be concurrently
satisfied. We can determine these properties by generated

6

Fig. 4: DRAM Banking for GTX280 (Unit of Channel Inter-
leaving = 2KB)

concurrent requests of a fixed stride pattern, and observingthe
resulting achieved bandwidth. Figure 3 shows how differences
in the addresses of memory transactions affect memory band-
width, in terms of million transaction per second. It is mea-
sured using a method similar to pointer-chasing in lmbench
[20]: each thread repeats the statementx = A[x] for a large
number of iterations, with the arrayA initialized with A[i]
= i and each thread initialized withx = blockIdx.x *
Stride. There is only one thread per thread block to ensure
that each request results in one memory transaction.

Figure 3 allows us to model how DRAM controllers are
arranged on the GTX 280. Given that there are eight DDR3
DRAM controllers [21] we assume global memory is 8-
channel interleaved. Also, we assume the DRAM burst size
is equal to a coalesced 64-byte transaction. With these as-
sumptions, we can approximate how memory accesses are
interleaved across and within DRAM channels by comparing
bandwidth for different power-of-two strides to obtain the
degree of interleaving, and determining how memory banks are
mapped within a channel by comparing bandwidth for strides
with power-of-two±1, ±2, and±4 burst size (e.g. 16K+64
bytes stride). In general, larger offsets means a higher rate of
hitting the same intra-channel region.

Since the access pattern for most 3D structured grid code
will cause large strides, we are more interested in the in-
terleaving scheme for large strides. For strides larger than
4KB, the interleaving unit for each DRAM channel is 2KB.
For addresses falling in the same channel, it is interleaved
internally with each of the 32 intra-channel regions capable

of handling one distinct DRAM burst, as shown in Figure 4.
Moreover, the DDR DRAM bank is decided by a different set
of bits so even if two requests map to the same channel and
same intra-channel port, they might still be able to proceed
without interference by having distinct bank numbers. Thus,
We define address bit[13 : 6] as thesteering bits, as those bits
help decide the routing toward a specific bank.

B. Analysis of Application Memory Requests

Given a layout-neutral source code, the data layout tool
must analyze the locality and distribution of index values that
are likely to be requested concurrently or closely in time,
to choose a layout that best distributes those indices among
channels, ports and banks, while making as fully use as pos-
sibly of every burst. This is achieved by arranging bits in the
index expressions known to generate unique, concurrent index
values to those address bit fields that distribute accesses among
parallel request handlers. In addition, the bits deciding the
burst word offset must be generated from a SIMD instruction
request, as explained in the coalescing rules [19].

The procedure of deriving a good layout for a given program
is outlined as follows:

1) Classify index expressions based on their concurrent
request distribution categories.

2) Compute thespanof indices: determining the range of
indices that will likely be concurrently requested.

3) Derive constraints from spans, coalescing rules, and
DRAM banking revealed by micro-benchmarking

4) Solve the optimization problem for bits that should be
tiled for all indices, subject to the constraints above

5) Derive the layout according to the optimal bit allocation
obtained from the solution

The first step is to classify indices based on their run-time
value ranges and distributions. Single-Program Multiple-Data
parallel implementations will generally give rise three major
kinds of index expressions.

• Category T: Indices that are computed with expressions
varying among co-scheduled tasks, i.e. threads within a
CUDA thread block These accesses are most important
to the utilization of DRAM bursts, as these requests
are typically generated very closely in time, or even
simultaneously from parallel vector lanes. In CUDA,
these are expressions dependent onthreadIdx.

• Category B: Indices that are computed with expressions
varying across collection of threads. Accesses of this
category will be generated concurrently from different
“cores” if collections of threads are issued to different
execution resource. These are treated differently because
the range of values of these kinds of indices tends to
form a loose sliding window, as cores complete current
collections of threads and retrieve others. Expressions
dependent onblockIdx.x define this category in the
CUDA execution model.

• Category I: Indices that do not belong to the above
categories, and are either invariant among concurrent
threads e.g. a fixed offset, or fully exercised by all threads

7

e.g. indices of different attributes of a grid cell. These two
subtypes are separated later.

For structured-grid code implemented in LN-CUDA, the
set of cells addressed by each thread is specified in terms
of the thread index, block index, and/or thread-invariant ex-
pressions involving neither. For example,A[blockIdx.x]
[threadIdx.x], is an index expression combining both
block and thread indices to access a 2D gridA. Some
applications, like LBM, may represent each grid cell with
multiple scalar attributes addressed by indexing with another
constant-sized grid dimension. If we take a snapshot during
the execution of such programs, the distribution of index
values of those grid dimensions issued by all active threads
within the system would not directly depend on these thread’s
indices or the blocks they are grouped in. An index expression
generally belongs to one or more categories above; e.g. an
index likethreadIdx.x+blockIdx.x * blockDim.x
belongs to both Category T and Category B.

C. Span of Indices

The second step is to estimate the run-time value ranges,
or span, for each category of index. For instance, Category I
indices are separated into invariant and variant by analyzing
their span. In CUDA, the span of Category T indices are
simply determined by the kernel configuration parameters: all
thread indices within a block are represented and scheduled
concurrently to an SM. The span of concurrent block indices
we can approximate from the block scheduling policy and
number of concurrent blocks, described in more detail later.
We do not expect strong correlation in the program counter
values of threads in different thread blocks, so instances of
Category I indices issued across CUDA warps usually don’t
have statically predictable locality. Hence, for CategoryI
indices we assume a uniform distribution of possible index
values.

For CUDA, spans for thread (Category T) and block (Cat-
egory B) indices are defined as:

span(threadIdx.d) = blockDim.d : d ∈ {x, y, z}

span(blockIdx.x) = min(#ActiveBlock , gridDim.x)

span(blockIdx.y) =
#ActiveBlock

gridDim.x

Where#ActiveBlock is the number of blocks will be ac-
tively executing in the entire system, which can be determined
statically from the compiled code’s resource usage and the
device parameters [19]. For example, when a kernel with
32 × 4 × 1 thread block dimensions,100 × 100 thread grid,
executes on a device that can support 90 concurrent blocks,
span(threadIdx.x) = 32, span(threadIdx.y) = 4 and
span(threadIdx.z) = 1, span(blockIdx.x) = 90, and
span(blockIdx.y) = 1.

As structured grid codes have a consistent set of classifi-
cations in indexing expressions in grid-accessing expressions,
we can depict the layout-decision procedure as follows: given
an index i extracted from grid-accessing expressions of a
grid annotated for transformation, an ideal flattening would

map as many lowerlog2(span(i))-bits as possible to the
steering bits of a word address to reduce the chance of DRAM
channel/bank conflict.

D. Data Layout Tiling as an Optimization Problem

In order to satisfy constraints imposed by memory hierarchy,
we shall design a flattening function that effectively groups
those parts from all dimensions that are likely to be concur-
rently indexed and form lower bits of flattened addresses from
them. More precisely, we transform the flattening function
RML by splitting indices with known “busy” parts: defining
a bit of an index value as busy if it varies across concurrent
dynamic instances that index expression, and shift those busy
parts to the lower-order address bits by a series of index swaps,
and the number of busy bits of an indexi ≃ log2(span(i)). We
can informally define this kind oflayout tiling operation being
applied on an indexI ∈ ~I and a dimensionD ∈ ~D as splitting
I and D at bit position j and k where0 ≤ k < j and shift
Ij:k andDj:k to another position in the index and dimension
vectors by a series of swaps with neighboring indices and
dimensions.

We model the problem of deciding the number of index
bits to be tiled for highly interleaved DRAM systems, such
as the GPU global memory, as an optimization problem. The
goal is to tile dimensions with spans larger than one, and make
those tiled dimensions fit the DRAM channel and intra-channel
interleaving characteristics as well as the DRAM burst size.

In following text, the variable representing the number of
tiled bits of an indexi is expressed asit:

maximize

z = C1threadIdx.xt + C2threadIdx.yt +
C3threadIdx.zt + C4blockIdx.xt +
C5blockIdx.yt

subject to

p = threadIdx.xt + threadIdx.yt +
threadIdx.zt + blockIdx.xt +

blockIdx.yt + span(It)

and bounds of variables

p ≤ #SterringBits − log2 (sizeof(T)
sizeof(word)

)

threadIdx.xt ≥ log2(64/sizeof(T))
threadIdx.xt ≤ ⌊log2(span(threadIdx.x))⌋

0 ≤ threadIdx.yt ≤ ⌊log2(span(threadIdx.y))⌋
0 ≤ threadIdx.zt ≤ ⌊log2(span(threadIdx.z))⌋
0 ≤ blockIdx.xt ≤ ⌊log2(span(blockIdx.x))⌋
0 ≤ blockIdx.yt ≤ ⌊log2(span(blockIdx.y))⌋

whereIt represents the Cat. I index, if applicable.

The objective function means that we maximize the number
of busy bits of indices tiled to the steering bits, accordingto
weights representing the relative importance of Cat. T and
Cat. B indices. The positive coefficientsC1 to C3 depend
on scheduling rules within an SM;C4 and C5 depend on
how thread blocks are issued across SMs. Our heuristic
sets C5, C4 > C1, C2, C3 > 0, and they are fixed for a
given architecture. This heuristic comes from an assumption
that different thread blocks are more likely to be executed
simultaneously than threads in the same block but in different
warps, since thread blocks could be distributed to different
SMs while threads in the same block but in different warps

8

are executed in turns on the same scheduled SM. So we favor
solutions that allocate more bits to block indices than to thread
indices. This heuristic also assumes that block indices from
thread block dimensions are enumerated and scheduled in row-
major order.

The constraint models the interleaving constraint: since
steering bits are bits 13-6 and bits 5-0 help form a DRAM
burst, all tiled dimension should not go beyond that limit.
We shall also tile entirespan(It) based on the assumption of
uniform distribution of Category I indices, and expect those
indices to be interleaved by the hardware.

The lower bound ofthreadIdx.x reflects how the global
memory coalescing hardware works; we would tile lower-
ordered bits of this index that would vary across threads in
a CUDA warp to offsets within the 64-bytes segment.

The upper bounds of thread and block indices indicate the
maximal degree of interleaving that each of those indices
would need. Effectively, if at run time an index expression
would have2b consecutive values, and that index is used to
index a single grid dimension in all threads, then we should be
able to interleave those requests with no more than2b different
interleaved memory regions. For non-power-of-two spans, we
take the floor in order to avoid under-utilization of some of
those regions.

It is worth noting that given this particular GPU architecture
and constraints obtained from modeling its memory interleav-
ing, this optimization problem can be solved greedily as all
the coefficients in objective function are positive. So starting
from the index with largest coefficient in objective function,
we tile all its bits until hitting the upper bound, then pick the
second largest one, and so on.

E. Order of Tiled Indices

After the optimal bit allocation of each tiled index has been
found, we arrange the dimensions in the transformed flattening
function based on the following partial order:

⊤ : threadIdx.xL (1)
IdxH ≤ IdxL (2)

blockIdx.dp ≤ threadIdx.dp (3)
CatI ≤ IdxL (4)

threadIdx.yp ≤ threadIdx.xp (5)
threadIdx.zp ≤ threadIdx.yp (6)
blockIdx.yp ≤ blockIdx.xp (7)

Where Idx ∈ {blockIdx.d, threadIdx.d}, d ∈ {x, y, z},
p ∈ {L, H}; IdxH and IdxL corresponds toIdx [:Idxt] and
Idx [Idx t−1:0], respectively ifIdx t > 0. CatI refers to Category
I indices.

Order 1 reflects the hardware limitation that in order to get
full coalescing within a half-warp,threadIdx.xmust be tiled
as the lowest bits of the flattened offset. Order 2 is obvious:
“busy” bits of an index should be mapped to lower bits in
flattened offset than their counterparts. Order 3 to 7 are the
heuristics we employ:

• Arrange thread indices first, then block indices. Requests
from different SMs are thus likely to be issued to dif-
ferent DRAM channels, rather than to same channel but
different ports.

Fig. 5: Typical Data Layout in terms of Index Classes

• Tile Category I indices after tiling all tiled thread/block
indices, because Category I indices are not functions of
thread/block indices and their value distributions are more
likely to depend on program counter. It is thus considered
less likely to be contiguous across requests and should not
be tiled to the bit range that is being used by intra-channel
interleaving.

• For thread indices, tile in the warp forming order.
• Assuming row-majored thread block issuing order, tile

the X dimension first.
A tiling scheme that follows those layout tiling rules of the

index classes may look like Figure 5. This figure represents
how individual bits in the flattened offset come from different
classes of indices.

F. An Example of Data Layout Transformation

The following example is an LN-CUDA implementation of
a 7-point stencil code kernel that solves a 3D heat equation
[22];

Listing 1: 7-pt 3D heat solver in LN-CUDA
/ / Dec lare A0 and Anext as 3D
/ / v a r i a b l e−l e n g t h a r rays

g loba l vo id h e a t k e r n e l (f l o a t fac ,
i n t nx , i n t ny , i n t nz ,
f l o a t A0[nz] [ny] [nx] ,
f l o a t Anext [nz] [ny] [nx])

{
i n t i = t h r e a d I d x . x +1 , j = b lock Idx . x +1;
i n t k = b lock Idx . y +1;

/ / Access in FORTRAN− l i k e form which
/ / i s then c o n v e r t e d to LNF
Anext [k] [j] [i] = 0 . 8 f / 6 . 0 f ∗ (

A0[k + 1] [j] [i] + A0[k − 1] [j] [i] +
A0[k] [j + 1] [i] + A0[k] [j − 1] [i]] +
A0[k] [j] [i + 1] + A0[k] [j] [i − 1])
+ 0 . 2 f ∗ A0[k] [j] [i] ;

}

And given the following thread grid information:

blockDim.x = 254; gridDim.x = 254
gridDim.y = 126; Occupancy = 1.0

The spans of thread grid indices are then computed:

span(threadIdx.x) = 254
span(blockIdx.x) = (#thread blocks/SM× #SM)

%gridDim.x = 120
span(blockIdx.y) = 1

So the three subscript expressions used to indexA0 and
Anext are of Category-B, Cat. B, and Cat. T respectively,
with their spans being 1, 120, and 254. The solution of the
optimization problem stated in section V-D suggests tiling

9

7 bits of the x dimension, and 5 bits of the y dimension.
After applying layout tiling according to the tiling above,the
resulting dimension vector~D and flattening function FF for
Anext andA0 will be:

~D : (nz, ⌈ny/25⌉, ⌈nx/27⌉, 25, 27)

FF (~I, ~D) : I2 × ⌈ny/25⌉ × ⌈nx/27⌉ × 25 × 27

+ I1[:5] × ⌈nx/27⌉ × 25 × 27

+ I0[:7] × 25 × 27 + I1[4:0] × 27

+ I0[6:0]

VI. EXPERIMENTAL RESULTS

Table III shows relative speedups of different memory
layouts. LBM is a CUDA implementation of SPEC CPU2006
[23] 470.LBM, which implements lattice-Boltzmann method
[8]; CFD is a kernel that performs either a red or black sweep
using Gauss-Seidel method; This kernel is from CU-FLOW, a
3D Navier-Stokes equation solver. Heat implements a 3D heat
equation solver using the Jacobi scheme, as described in [12].

The last two benchmarks represent the two major point
methods for solving PDEs using the finite difference method.
LBM is an alternative CFD approach that uses particle-based
method instead of discretizing the PDE.

For each of the benchmarks, we first manually convert them
into layout-neutral form and apply our layout transformation
methodology on the main grids on which each benchmark
operates. Because our compiler infrastructure does not yet
support variable-length array syntax, we use annotations to
communicate that information to the compiler. Then in the
potential layout transformation space, manual search is applied
to nearby regions on the solution found by our methodology;
we then compare the baseline layout of each benchmark with
two layouts.

TABLE III: Benchmarks and Speedup

Benchmark Layout Speedup Bandwidth
(GB/s)

LBM Array of Structures 1.0 18.10
Structures of Array 5.11 92.60
Transformed (auto) 6.60 119.50
Transformed (manual) 6.60 119.50

CFD Row Major Layout 1.0 56.63
Transformed (auto) 1.25 70.93
Transformed (manual) 1.30 73.75

Heat Row Major Layout 1.0 74.31
Transformed (auto) 1.07 79.37
Transformed (manual) 1.08 80.17

Significant speedups are observed from all benchmarks,
ranging from 6.6X (LBM) to 1.07X (Heat) with automatically
derived layout. The performance different between layout-
optimized and baseline layout is tied to how far the trans-
formed layout diverges from the baseline. For instance, the
transformed LBM layouts more closely resemble a (tiled)
structure of array form than array of structure form: much
of the performance is gained from improved burst-level par-
allelism due to improved memory coalescing, and swapping

the structure field index into a higher bit position. We earn
30% additional performance gained from tiling by making
busy bits stay in steering bit position. On the other extreme,
the Heat benchmark’s transformed layout is actually very
close to RML, with only a very small degree of tiling inx
and y introduced. The performance therefore only increases
slightly, as the original layout was quite good for that particular
memory system.

The achieved bandwidth of the transformed code is primar-
ily dependent on the proportion of accesses that are alignedin
the transformed layout. It is impossible to force all accesses
to be aligned, as many stencil codes will generate indices of
i, i+1, and i-1, which cannot all be aligned in any layout.
For our system, unaligned accesses essentially use twice the
bandwidth necessary, as two bursts are triggered for only one
burst-size of unaligned data. Of our benchmarks, LBM has
the lowest percentage of unaligned accesses, with 29 aligned
and only 10 unaligned accesses per thread. With the inherent
waste of partially used bursts, the transformed LBM has a
hard theoretical bandwidth limit of 87% of peak. The achieved
bandwidth of the transformed LBM represents 85% of peak
bandwidth, or 98% of the theoretical bandwidth limit given
partial-burst constraints. The other two applications have a
much higher proportion of unaligned accesses, resulting in
lower achieved bandwidths.

Also, our experiment shows that even with extra over-
head computing memory addresses, the transformed applica-
tions still gained performance by improving the efficiency of
the memory hierarchy. This highlights both the bandwidth-
boundedness of the applications themselves, and the validity
of trading extra address calculation instructions for better
achievable bandwidth in such bandwidth-bound situations.

VII. C ONCLUSION AND FUTURE WORK

We have presented a formulation and language extension
that enables data layout transformation for structured grid
codes in CUDA. We also benchmarked the GTX280 GPU to
reveal its DRAM banking and interleaving scheme. Based on
the micro-benchmark results, we developed a layout transfor-
mation methodology that can significantly speed up various
structured-grid codes by distributing concurrent memory re-
quests evenly to DRAM channels and banks.

Our methodology does not preclude opportunities of ap-
plying other transformations that aims at improving reuse.
Future work investigating holistic data layout transformations
addressing temporal locality, spatial locality, and MLP will be
paramount to achieving the highest levels of performance for
important, bandwidth-bound structured grid applications.

ACKNOWLEDGMENTS

This work was funded by the Universal Parallel Computing
Research Center at the University of Illinois at Urbana-
Champaign. The Center is sponsored by Intel Corporation
and Microsoft Corporation. We would like to thank Chris
Rodrigues and Nady Obeid for their comments.

10

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[2] K. W. Morton and D. F. Mayers,Numerical Solution of Partial Differ-
ential Equations: An Introduction. New York, NY, USA: Cambridge
University Press, 2005.

[3] J. H. Ferziger and M. Peric,Computational Methods for Fluid Dynamics.
Berlin: Springer, 1999.

[4] C. D. Gundolf, C. C. Douglas, G. Haase, J. Hu, M. Kowarschik, and
C. Weiss, “Portable memory hierarchy techniques for PDE solvers, part
II,” SIAM News, vol. 33, pp. 8–9, 2000.

[5] J. W. Demmel,Applied numerical linear algebra. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1997.

[6] Y. H. Qian, D. D’Humieres, and P. Lallemand, “Lattice BGKmodels
for Navier-Stokes equation,”Europhysics Letters, vol. 17, no. 6, pp.
479–484, 1992.

[7] Y. Zhao, “Lattice Boltzmann based PDE solver on the GPU,”Visual
Computing, vol. 24, no. 5, pp. 323–333, 2008.

[8] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rüde, “Optimiza-
tion and profiling of the cache performance of parallel lattice boltzmann
codes,”Parallel Processing Letter, vol. 13, no. 4, pp. 549–560, 2003.

[9] G. Rivera and C.-W. Tseng, “Tiling optimizations for 3D scientific
computations,” inSC00: Proceedings of the 2000 conference on Su-
percomputing, 2000, p. 32.

[10] S. Sellappa and S. Chatterjee, “Cache-Efficient Multigrid Algorithms,”
International Journal of High Performance Computing Applications,
vol. 18, no. 1, pp. 115–133, 2004.

[11] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, P. Sadayappan, Y. Chen, H. Lin, andT.-
f. Ngai, “Data layout transformation for enhancing data locality on
nuca chip multiprocessors,” inProceedings of the 18th International
Conference on Parallel Architectures and Compilation Techniques, 2009,
pp. 348–357.

[12] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computationoptimization
and auto-tuning on state-of-the-art multicore architectures,” in SC08:
Proceedings of the 2008 conference on Supercomputing, Piscataway,
NJ, USA, 2008, pp. 1–12.

[13] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded gpu using cuda,” inProceedings of the
13th Symposium on Principles and Practice of Parallel Programming,
2008, pp. 73–82.

[14] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,”Computer
Architecture News, vol. 36, no. 3, pp. 39–50, 2008.

[15] T. Moscibroda and O. Mutlu, “Distributed order scheduling and its
application to multi-core DRAM controllers,” inProceedings of the 27th
Symposium on Principles of Distributed Computing, 2008, pp. 365–374.

[16] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems,”
Computer Architecture News, vol. 36, no. 3, pp. 63–74, 2008.

[17] J. Shao and B. T. Davis, “A burst scheduling access reordering mech-
anism,” in Proceedings of the 13th International Symposium on High
Performance Computer Architecture, 2007, pp. 285–294.

[18] V. Volkov and J. W. Demmel, “Benchmarking gpus to tune dense linear
algebra,” inSC08: Proceedings of the 2008 conference on Supercom-
puting, 2008, pp. 1–11.

[19] nVIDIA, “nvidia cuda programming guide 2.0,” 2008.
[20] L. McVoy and C. Staelin, “lmbench: portable tools for performance anal-

ysis,” in Proceedings of the 1996 USENIX Annual Technical Conference,
1996, pp. 23–23.

[21] nVIDIA, “nvidia geforce gtx 200 gpu architectural overview,” 2008.
[22] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick, “Impact

of modern memory subsystems on cache optimizations for stencil
computations,” inProceedings of the 2005 workshop on Memory system
performance, 2005, pp. 36–43.

[23] C. D. Spradling, “Spec cpu2006 benchmark tools,”Computer Architec-
ture News, vol. 35, no. 1, pp. 130–134, 2007.

