Data Layout Transformation for Structured-Grid
Codes on GPU

[-Jui Sung, Wen-Mei Hwu
University of Illinois at Urbana-Champaign
{sung10, w-hwy@uiuc.edu

Abstract—We present data layout transformation as an ef- Occupancy, e ont
fective performance optimization for memory-bound structured- CUDAgrd neutral CUDA
grid applications for GPUs. Structured grid applications are a —_—
class of applications that compute grid cell values on a redar $
2D, 3D or higher dimensional regular grid. Each output point
is computed as a function of itself and its nearest neighbors Decide span of Extract index
Stencil code is an instance of this application class. Exarntes e%‘:;g:,i’,‘,s ptibeirdoly
of structured grid applications include fluid dynamics and heat
distribution that solve partial differential equations with an Layout Tiling as an
iterative solver on a dense multidimensional array. optimization problem

Using the information available through variable-length aray Ic>|otain defsired | Gen%::]esf(étJmDeéjwith
syntax, standardized in C99 and other modern languages, we ayoul(s) from ’ Flattening Functions

have enabled automatic data layout transformations for stuc-
tured grid codes with dynamic array sizes. We first present
a formulation that enables automatic data layout transforma-
tions for structured grid code in CUDA. We then model the
DRAM banking and interleaving scheme of the GTX280 GPU

through microbenchmarking. We developed a layout transfoma- f ina the t f fi Vi tedi s
tion methodology that guides layout transformations to stécally pertorming the franstormation manually IS very tediousu

choose a good layout given a model of the memory system.in less readable code, and must be transformed again every
The transformation which distributes concurrent memory re- time a new platform is targeted.

quests evenly to DRAM channels and banks provides substaafi Currently, programming languages such as C and FOR-
speedup for structured grid application by improving their TRAN ri 'di defi he | f | d all
memory-level parallelism. rigidly define the layout of natural arrays, and allow
usages that rely on that natural layout, such as casting to a
linear array or deterministically aliasing “out-of-bolgidac-
I. INTRODUCTION cesses to real elements. Therefore, programmers optingeto u

Structured grid applications [1] are a class of applicatior@utomatic transformations on arrays must be subject to more
that calculate grid cell values on a regular (structured Firingentinterfaces that insulate the source code fromgis
general) 2D, 3D or higher dimensional grid. Each outpif the layout. However, implementing arrays of transforfeab
point is computed as a function of itself and its nearelyout using a new language data type or C++-style classes
neighbors, potentially with patterns more general than edfixboth complicate the language and may contain undesirable
stencil. Examples of structured grid applications inclfidel overheads for accessing the most performance-critical dat
dynamics and heat distribution that solve partial difféi@n Structure of the application. The data layout optimization
equations (PDEs) with an iterative solver on dense multidoposed in this paper addresses these problems by defining a
mensional arrays. When parallelizing such applicatiohs, tlayout-neutral form of array allocation and access, anchafi
most common approach is to spatially partition the grid celansformations that allow us to adapt the linear reprexdiemt
computations into fixed sized chunks, usually as planes %r best utilize the memory-level parallelism (MLP) of the
cuboids, and assign those chunks to workers e.g. threads, Mpderlying memory hierarchy.
ranks, or through OpenMP parallel for loops. Figure 1 depicts our procedure of data layout transforma-

However, the underlying memory hierarchy may not interatibn, using a modern GPU as an example memory system.
in the most efficient way with a given decomposition ofhe input is a kernel in layout-neutral form, which can be
the problem. Data accesses may not fully exploit paraitelisconsidered a restricted form of variable-length arraysary
among memory controllers, interleaved DRAM banks, el@enoting the size of each array dimension, with array access
ments within a DRAM burst (pipelined access of a subsetstricted to FORTRAN-like form. Knowledge of the execu-
of DRAM columns in a row). Furthermore, the full details otion model is then used to determine the relationships and
the memory hierarchy are often too obscure or complex forranges of array indices likely to be concurrently requedted
typical application programmer to make the best use of thesach array of interest, an optimization problem is formedat
Even for exceptional cases where the programmer does knamd solved based on the estimated number of concurrent
how to transform the data layout to fit the memory systermstances of each array index with distinct values, with the

Fig. 1: Data Layout Transforms for Structured Grid Codes

solution determining the desired layout. A code generatidtowever, most of them focus on increasing the cached reuse of
pass emits transformed code with array access expressidata loaded from memory. For traditional cache-based mgmor
converted to flattened array accesses using transformed laerarchies, most methods do so by transforming the tralrers
outs. order of array elements by loop tiling at cache line size [9],

The rest of this paper explains our methodology and resujfg].
in detail. Section Il provides an overview of iterative PDE Lu et al.'s recent work applies data layout transformation
solvers. Section Ill discusses related work in data layofdr cache locality in NUCA (non-uniform cache architecfure
transformations. Section 1V-B formulates logical and phyship multiprocessors [11]. They employ similar data layout
ical representations of arrays, and defines the data layauainsformations, but their work targets localizing acess®
transformations we consider using this formulation. Secti local L2 cache bank, rather than exploiting MLP in multi-
V discusses how we obtained a memory address interleavowes connect to multi-channel memory controllers through
scheme of the DRAM controller through micro-benchmarkingnterconnect, and only considers sequential loop indices t
and derive an optimized layout from the program and ewptimize cache locality.
ecution model. Section VI presents our experiment results,Stencil codes are a subset of structured grid applications
followed by some concluding remarks in Section VII. that have been studied extensively, and optimized for iycal

on many platforms, including the GPU platform we use in

Il. COMMON ACCESSPATTERNS OFPDE SOLVERS ON thjs paper [12]. Because there is no traditional cache ectlir

STRUCTURED GRIDS control over the relative execution order of threads, md3/G

Although there are many numerical methods that deal wiipecific transformations for stencil codes aim to enhanasere
PDEs, there are only a few data access patterns among @dheshared data across neighboring cells using a pipeliee-li
most prevalent methods solving these problems on struttuspproach, e.g. Datta et al. [12].
grids. The structured grid often comes from discretizinggth ~ All of the methods mentioned in this section thus far
cal space with Finite Difference Methods [2] or Finite Volam improve how efficiently data is used or reused in the on-
Methods [3], while solutions based on Finite Element Methoahip cache of the system. However, these approaches are not
[2] often result in irregular meshes. always applicable or sufficient. For example, LBM within one

Many numerical methods solve PDEs through discretizatidimestep does not contain any data reuse [8], and even once
and linearization. The linearized PDE is then solved asgelar reuse is exploited, some stencil codes may still be perfooma
sparse linear system [4]. For large problems, direct-gmiut bound by off-chip bandwidth. Applications in such situaso
methods are often not viable: practical approaches aresalmoould potentially still gain significant performance impes
exclusvely iterative-convergence methods. ment by using MLP-oriented optimizations.

Iterative techniques like Jacobi method and Gauss-Seideln terms of the underlying DRAM memory model, most
(including those with Successive Overrelaxation) are roftef the work described above only considered the latency of
used as important building blocks for more advanced solvéiting or missing in the data cache. However, for a masgivel
like multigrid [5]. Those methods are both instances of citen parallel system, balancing DRAM traffic across controllers
codes, whose stencils can be expressed as a weighted surwaofbe important. Datta et al. [12] take into consideratian t
the cell and nearest neighbors in the grid. The major diffege affinity of DRAM controller and processor cores in NUMA
in terms of access patterns is that Gauss-Seidel methagishitectures using an affinity-aware memory allocatorfaks
typically apply cell updates in an alternating checkerbdoaas we know, there is no software-based approach to balancing
style. Adjacent elements are never updated at the same sweepkloads for the multi-channel, interleaved DRAM con-
two separate, serialized sweeps over the red and black céitdlers employed in modern parallel architectures, altito
performs one whole iteration update. according to our micro-benchmarks, 7X performance loss

The lattice-Boltzmann method (LBM) [6], a particle-basedould occur in extreme cases.
method that was mainly used in computational fluid dynamicsFor GPUs, we know of no previous work applying data
problems, was recently extended as a general PDE solver [#@}:out transformation to structured-grid code other tHaerpte
The LBM is also an iterative method applied to structuresrray-of-structure to structure-of-array transformatifi3],
grids. The cell update rules for the LBM are divided into twavhich exploits pipeline parallelism within DRAM burstsH|.
stages that update multiple grid cell properties (i.eritistion coalescing). Our data layout transformation further eixplo
functions of particles close to different edges or surfames concurrency in multi-channel and interleaved DRAM bank
the grid cell.) The intra-cell stage (called collide) ander organization.
cell stage (called stream) combined perform one iteragion’ Various works [14]-[17] have proposed hardware optimiza-
update [8]. The stream stage accesses the nearest neightions for DRAM controllers working toward uniform access
of the current cell, while the collide stage’s inputs arereiyt latency and fairness, some parallelism aware [15], [16]. Al
local to the current cell. of them focus on scheduling DRAM requests under certain

workloads, therefore no attention is given to potentiadigd
IIl. RELATED WORK costly software approaches that transform the distributit

Since stencil codes and LBM applications are often memonyemory addresses requested. Also, those approaches only
bandwidth-bound, many approaches have focused on enharadlance among memory banks under the same controller, while
ing the memory system performance for these applicatiorsgveral controllers are are often present in modern systems

i=[0:D) | E0D) [FOD)

IV. THE DATA LAYOUT TRANSFORMATION FOR ‘

) M

STRUCTUREDGRID C CODE

In C, an array is a collection of values identified by integer
indices with a language-defined memory layout. To enable

=0 =1 =2 =3
FF=j*

j=D-1
D, +i

layout transformation, we must first separate the use otawdi

Split dimension to,=j, . . and] =, 01@

from the linear layout. We first present a formalization of 0

arrays, layouts, and layout transformation. Then, we descr
how a compiler can recognize the information necessary to
perform effective layout transformations efficiently, imot

that the most reliable method is available only when the

programmer specifies array accesses in FORTRAN-like mul-

tidimensional indexes. Variable-length array syntax,@ngly
standardized feature of the C language, enables that form of
index expression even for arrays of all kinds, includingstho
whose size is not statically known. Finally, a data flow asly

is designed to help deduce data layouts for subscriptedgyoin
accesses.

j,=0 j=1 J,=1Dj2"1
FF=j,*2*D +J *D, +i
Swap I and j ; Jm] @
flis / A i / A
‘ J,=10:15] =[0:15] \)‘ J,=10:75] ‘ J.=10:15] ,=[0:15] \)‘ J=10:15]
=0 i=1 =[0D) =0 =1 =[0D)
j,=0 j=1

J,=1D/24
FF=j,*D*2¢ +i*2'+J

Fig. 2: An Example of Layout Transformation

C, and languages derived from it, define the layout of arrays

A. Grids and Flattening Functions

Definition 1. An n-dimensional array G is characterized by? a[3][
an index space that is a convex, rectangular subspa
and type T.

as row-major order. For example, theML for the array

4] would bel, + I; x 4. For an expressmm[[i], RML

denof computesi + j « 4. The inverse functiom ML~
a vector = {zxmod4, z/4}.

() returns

o B _ We can define some transformations/o#/L with regards
An array element is identified by a vector of integers calle@ an n-dimensional array G with index vectoand dimension
anindex vectorWithout loss of generality, for the index vectoryector D:

I of an array element/; € [0, Dim;) where Dim; € N,
Dim; > 0 is thei-th element of thalimension vectoof G.
T is the type of all elements in G.

Definition 2. An injective function FFN"” — N is a flattening
function for an n-dimensional array G, if this function is
defined for all valid array element index vectors.

A flattening function defines a linearization of coordinates
of elements in G. When that integer is interpreted as thedffs
for addressing an element from the beginning of the memory
space reserved for the array, then this flattening function
defines the memory layout of the array. We require FF to be
injective: it should map every valid index vector to a unique
value. An FFf explicitly forbids many-to-one mapping, and
thus f~1 is defined andf~'(f(I)) = I for a valid index
vector]. With these restrictions, a flattening function uniquely
defines a memory layout and vice-versa; we use these terms
interchangeably in the remaining text.

B. Row-major layout and layout transformations

Theorem 1. For an n-dimensional array with index vector
I and dimension vectoD with O <IL <D,V <i<
n), function RML(I, D) = 37, ' I, [T~y D; is a flattening

function that reduceg to an mteger

Proof: Given the integet = RML(I, D) for an element
with index vectorI of an n-dimensional array G with dimen-
sion vectorD, we can computé; by (i /11,0 Dj) mod D;. It
follows that0 < I; < D,. Since this apphes to any legitimate
array cell in G, it is clear that the functioRML is injective,
and is defined for all valid indices of G, o/ L is a flattening
function.

Split;

Swap: Interchange indexand j (i # j). This transforma-

tion creates a new index vectdt from I and a new
dimension vectoD’ from D. I’ and D’ are then used
as inputs to the transformed FE27") I/ [\~ D)
where:

I, fork ¢ {i,j}
I'={Ij,keN,k<n}; I, =41 fork=i
I, fork=j
Dy, fork ¢ {i,j}
D' ={Dj,keNk<n}; D, ={D; fork=i
D; fork=3y

Intuitively, this transformation swapg; and I;
as well asD; and D;. Considering multi-element
structures as another array dimension, the common
structure-of-arrays to array-of-structures transforma-
tion [13] is an instance of (repeated) application
of the swap transform on neighboring dimensions,
shifting the structure offset index to the highest
position in the index vector. Repeated applications of
swapping are required in general when it is desired
to shift a dimension along some direction, so that the
relative order of other dimensions is not changed.
Split dimensioni into T-sized tiles,0 < T < D;.
This transformation creates a new index vedtcand
a new dimension vectab’, which are inputs to the
transformed FFI” and D’ are created by dividingd;
into I,, I, and D; into D;,, D;, wherel;, = I; mod
T,I;,=11;/T] andDy, = [D;/T], D, =T.

Swapping can be considered a “relabeling” of some in-
B dices and dimensions. Splitting is diving one index into ,two

with the lower index being a single-digit, bage number. « Pointer dereferencing: we derive by applying the in-

This introduces "padding” into the original array dimensio verse of RML on the offset to the base of the array. An
bringing it to an even multiple of". Since the new dimen- example would be:
sion is rounded up to the nearest multiple 6f it allows float b[10][10][10]: int x:

all valid indices in both portions of a split index to be S1: float %p = b;
uniquely mapped. It follows that these two operations are S2: *(p + x) = 0; // e = x(p + X)
closed on FF. Practically, we only consider and implement The layout neutral form of expressian
split operations forl’ = 2*, so the transformed FF can be L. .
expressed in fast bit operations rather than slow geneegjén (6, (10,10,10), 1), I'= RML, (p+“j’_ b)

; : ; . LN(e) = 0<I;<10,0<i<n
modulo operations. Applying a split FF with power-of-two . otherwise
tile size on index vectof w.r.t. an array A is abbreviated as
AlLy 1) igog, (Doyk+ 1) Lieo 1. [11][To]. Figure 2 shows « Other operations:
a layout tiling example that transforms an access to arrayConceptually the layout transformation process is to k&pla
A[D,][D;] from A[j][4], i.e. RMLy4, t0 A[jiog2(n,):4)[1][js:0]- array accessing expressienwith FF(LN(e)). For those
First the dimensiory is split into jz andj; without actually expressions with pointer-derefencirg: (p+of f), general
changing the order of elements in memory, only paddinge would substitutee with FF(RML ! (off)). However,
the grid to some multiple oR* x D, elements. Then the since the run-time cost of applyingML~! to all array-
dimensions: and j; are swapped, which also changes thaccessing expressions might be prohibitive, it is generall

order of elements in memory. preferred to derive layout-neutral form using the first noelth
That is, one implements all expressions accessing alldcate
C. The Layout-Neutral Form and LN Function multidimensional arrays using only fully-qualified sulipts

Definition 3. LN is & functionS — {UpenGy X Nexp:" in all dimensions to access elements.

Nexpr'} U {€}, whereS is the set of array-accessing expres-

sions in a program P and the tripl€’,, x Nex,:™" X Nexp:” IS E. Layout Transformations as Extended Types
the corresponding layout neutral form, wheg, is the set of
n-dimensional array objects in P, and the tdQ,,," are the
dimension vector and the index vector respectively.

Types in programming languages specify the information
necessary for code to interpret and operate on the data in-

Nepr is the union of natural numberdyj and expressions stances of that type. The layout of an array is an implicit

; L L art of an array’s type, typically defined by the language.
Whpse type is ON ¢ |nd|cate§ the case where the triple is nof]).o transform the layout of a particular array, excludingesth
defined for a given expression.

arrays, we must essentially change that array’s type, and
In other words, LN magas an expressierto either a triple propagate that change in type information through the janogr

(9 € GmD € Negpr'',I € Negpr™), Where g, D and I to ensure that all parts of the program accessing that array

are respectively an-dimensional array, its dimension vectordo so correctly. While this could be accomplished without

and an index vector corresponding to the cell accessed dnmpiler transformation by making the flattening function a

e, or ¢ when there is no such triple far. In practice, the indirect function associated with each array, these method

compiler must be able to map every array access expressimmnoduce undesirable overheads compared to static mgjini

of a particular array object to such a triple in order to ihseof the flattening function.

the FF specific to that layout into each access expression. W& herefore, we present algorithms for propagating the im-

loosely define a particular piece of code as “layout-neltragblicit layout type information statically through a progra

if the compiler has all the information necessary to arhiyra identifying the pointer references that access the objsitts

define the layout of the desired arrays. extended types. The proposed usage scenario is that the user
specifies through annotation which grid should the compiler
D. Deriving Layout-Neutral Form from C Code perform automatic layout transformation, without speicify

For C programs, we can derive layout neutral form by a%ctual layout, and the compiler decides actual layout that
orks best on the given grid for the given architecture, and

informally specified LN from the type of operation of a g|ver¥v . i . . .
expression, as shown below: propagates this layout information through this analysis.

Fullv-aualified arrav subscrioting: we can deri We shall describe this analysis as a monotonic dataflow
* y-q y plng. nalysis; in this framework a data-flow analysis is repreestn

straightforwardly from the declaration of the array, anas a semilattice and a set of transfer functions. For this
[from the expression. Consider the following C COdSroblem the semilattice isif, A), where each element in the

snippet: semilattice is a function¥ : P — LU{UT, L}. L is a set of
float a[D][D]; _ tuples representing the layout, whee € N, N™* N* — N)
Sit alks3j]li] = 1.0 denote dimension, dimension vector, and flattening functio
The layout neutral form o&[k+3j] [i]: respectively.P is the set of pointer variables in the program,

(a,(D, D), (i, k +34)) for 0<i< D, UT stands foruntransformedand L meansincompatible
LN (a[k + 3j][i]) = 0<k+3j<D respectively. An untransformed pointer indicates thatdhi
€ otherwise structure pointed by this pointer usés\/L as its flattening

function; an incompatible pointer however indicates thmes t T T T T T T
pointer may point to at least two data structures with incom- ;. -
patible flattening functions. Two flattening functioh%’; and
FFy are compatible (expressed A%y == FF5) if and only
if for all legitimate dimension vectoD and index vectod,
FF(D,I) = FFy(D,I). That is, the FF for 4| oat array
can be compatible with th& ML for al ong array as long as
their element sizes are the same. This allows transfornmiag t
layout of some structured-grid code, in which non-float type
elements are accessed through type-casted grid baserpointe
The set of transfer functions € F'; f : L — L are created 1
from the type of operations in the flow graph, as shown in
Table I; the meet operation of two functions,n € V¥ is
defined in Table Il. In the table, the binary relationskig- for

two tuples{ll = (n1,D1 € Negp "', FF1),12 = (ne, Dy € _ _ . . .
Neape™, FF)} € L exists if and only ifny = ny and Dy = Fig. 3: Effective memory bandW|dtr_1 v.s. strides in bytes
D, and FF; == FF . between requests from from many single-threaded blocks on

GTX280. Bandwidth is shown in millions of transactions per
second, and strides are in increments of 64 bytes.

Million DRAM Transactions per second

512 |
1024 |
1536 |-
2048 |
2560
3072 |
3584
4096
4608
5120 -
5632 |-
6144 [
6656
7168 |
7680 [
8192 [
8704 |
9216 [
9728 |

10240

10752 |-

11264 |-

11776 |-

12288 |-

12800

Stride (words)

TABLE I: Transfer Functions

Operation Type Transfer functionf () in the form of .
Flw) = v with v(w) = p(w)V(w # computational model of that GPU to analyze the expected
1;31) and V‘I(/pl) = .., wherew € program execution and the concurrent requests likely to be
SH, v E

No definition involving any| v(p1) = u(p1) (Identity function)
pointer variables

pl = p2; pl andp2 are | v(pl) = u(p2).
pointers
pl = p2 + t; plandp2 | v(pl) = Lif u(pl) # UT elseUT
are pointers andl is of inte-
ger type

Declaring a pointep | v(p1) =UT

Declaring a pointep to an | v(p1) = (n,DV, RML)
n-dimensional gridG with a
dimension vectoDV

Apply layout transformation| v(p1) = 1t(u(pl)) wherelt is a
It to the data structured layout transformation.
pointed bypl

TABLE II: Meet Operation

1 ur L
|2 if |1==12then L 1
|1 else L
ur L ur L
1 1 1 1

V. DIRECTING DATA LAYOUT TRANSFORMATION

generated.

A. Benchmarking and Modeling Memory System Characteris-
tics

A good layout should thus be able to exploit:

« Parallelism across different DRAM channels
« Parallelism across banks within a DRAM channel
« Pipeline parallelism within a DRAM burst

while preventing channel/bank imbalance by avoiding large
strides among requests issued closely in time. In order to
perform good data layout for structured grid applicatioibs,

is necessary to benchmark the underlying memory hierarchy
to model the achieved memory bandwidth as a function
of the distribution of memory addresses of concurrent re-
quests. Previous work [18] has benchmarked the GPU to
obtain memory latency versus stride in a single-threadhggett
However, since the class of applications we are targeting is
mostly bandwidth-limited, we must determine how effective
bandwidthvaries given access patterns acrafisconcurrent
requests. First, each memory controller will have somespatt

of generating DRAM burst transactions based on requests.
The memory controller could be only capable of combining
requests from one core, or could potentially combine retgues
from different cores into one transaction. In our example,
the GPU memory controller implements the former, with the
CUDA programming manual [19] defining the global memory

This section describes how to derive the data layout to bestalescing rule, which specifies how transactions are gésr
match an application data structure to the MLP supported a function of the simultaneous requests from the vector
by the underlying memory hierarchy. Intuitively, the spade lanes of one SM.
all possible layouts could be very large. In this section we Next, we must define our model on how bits in memory
demonstrate how an analytical model of the memory hierarchygdress steer interleaving among memory channels, DRAM
and static analysis of the program can efficiently lead to danks, and any other parallel distribution structures that
effective choice of layout. We derive the analytical mod®l f creases the number of requests that can be concurrently
an NVIDIA GeForce 280 GTX as an example, and use theatisfied. We can determine these properties by generated

DRAM - DRAM Intra-channel Burst Byte of handling one distinct DRAM burst, as shown in Figure 4.
Bank Channel Offset Moreover, the DDR DRAM bank is decided by a different set
A[21:20] A[19:14] A[13:11] A[10:6] [A[S:2] A0l of bits so even if two requests map to the same channel and

‘ l i same intra-channel port, they might still be able to proceed
without interference by having distinct bank numbers. Thus
We define address hjit3 : 6] as thesteering bitsas those bits
SHHO sMEl | SNH2S help decide the routing toward a specific bank.
4 ﬁ A B. Analysis of Application Memory Requests
Given a layout-neutral source code, the data layout tool
4’ must analyze the locality and distribution of index valuestt
i are likely to be requested concurrently or closely in time,
v ! ! ! ¥ to choose a layout that best d_|str|bute_zs those indices among
channels, ports and banks, while making as fully use as pos-
DRAM | DRAM || DRAM | DRAM DRAM =— sibly of every burst. This is achieved by arranging bits ia th
Gl 0 |) Gl) Sl | Gl index expressions known to generate unique, concurreekind

values to those address bit fields that distribute accessesa
parallel request handlers. In addition, the bits deciding t
burst word offset must be generated from a SIMD instruction
request, as explained in the coalescing rules [19].

The procedure of deriving a good layout for a given program
is outlined as follows:

1) Classify index expressions based on their concurrent
request distribution categories.

2) Compute thespanof indices: determining the range of
indices that will likely be concurrently requested.

3) Derive constraints from spans, coalescing rules, and

concurrent requests of a fixed stride pattern, and obsethig DRAM banking revealed by micro-benchmarking
resulting achieved bandwidth. Figure 3 shows how diffeesnc 4) Solve the optimization problem for bits that should be
in the addresses of memory transactions affect memory band- tiled for all indices, subject to the constraints above
width, in terms of million transaction per second. It is mea-) Derive the layout according to the optimal bit allocation
sured using a method similar to pointer-chasing in Imbench ©obtained from the solution

[20]: each thread repeats the statement A[x] foralarge The first step is to classify indices based on their run-time
number of iterations, with the arrak initialized with A[i] value ranges and distributions. Single-Program Multipta
and each thread initialized witk = bl ockl dx. x *= parallel implementations will generally give rise threejona

St ri de. There is only one thread per thread block to ensukénds of index expressions.

that each request results in one memory transaction. « Category T: Indices that are computed with expressions
Figure 3 allows us to model how DRAM controllers are varying among co-scheduled tasks, i.e. threads within a
arranged on the GTX 280. Given that there are eight DDR3 CUDA thread block These accesses are most important
DRAM controllers [21] we assume global memory is 8- to the utilization of DRAM bursts, as these requests
channel interleaved. Also, we assume the DRAM burst size are typically generated very closely in time, or even

32 Interleaved regions per
DRAM controller, selected
by A[10:6]

4 Banks per interleaved

region, selected by

A[21:20]

Fig. 4: DRAM Banking for GTX280 (Unit of Channel Inter-
leaving = 2KB)

Bank Selection ‘

is equal to a coalesced 64-byte transaction. With these as-
sumptions, we can approximate how memory accesses are
interleaved across and within DRAM channels by comparing,
bandwidth for different power-of-two strides to obtain the
degree of interleaving, and determining how memory bands ar
mapped within a channel by comparing bandwidth for strides
with power-of-two+1, +2, and+4 burst size (e.g. 16K+64
bytes stride). In general, larger offsets means a higheraht
hitting the same intra-channel region.

Since the access pattern for most 3D structured grid code
will cause large strides, we are more interested in the in-
terleaving scheme for large strides. For strides largen tha
4KB, the interleaving unit for each DRAM channel is 2KB. «
For addresses falling in the same channel, it is interleaved
internally with each of the 32 intra-channel regions capabl

simultaneously from parallel vector lanes. In CUDA,
these are expressions dependent bneadl dx.

Category B: Indices that are computed with expressions
varying across collection of threads. Accesses of this
category will be generated concurrently from different
“cores” if collections of threads are issued to different
execution resource. These are treated differently because
the range of values of these kinds of indices tends to
form a loose sliding window, as cores complete current
collections of threads and retrieve others. Expressions
dependent ol ockl dx. x define this category in the
CUDA execution model.

Category I: Indices that do not belong to the above
categories, and are either invariant among concurrent
threads e.g. a fixed offset, or fully exercised by all threads

e.g. indices of different attributes of a grid cell. Thesetwmap as many loweiog, (span(i))-bits as possible to the
subtypes are separated later. steering bits of a word address to reduce the chance of DRAM

For structured-grid code implemented in LN-CUDA, th&hannel/bank conflict.
set of cells addressed by each thread is specified in terms
of the thread index, block index, and/or thread-invariatt ep. Data Layout Tiling as an Optimization Problem

pressions involving neither. For examph, bl ockl dx. x] . S .
[thread! dx. x] , is an index expression combining both In order to satisfy constraints imposed by memory hiergrchy

block and thread indices to access a 2D gfd Some we shall design a flat_tenmg_ function that_effec'uvely grsup
o those parts from all dimensions that are likely to be concur-
applications, like LBM, may represent each grid cell with

multiple scalar attributes addressed by indexing with lagiot rently indexed anc_:l form lower bits of flattened adqlressemf_ro
.them. More precisely, we transform the flattening function

constant—S|_zed grid dimension. If we take a sn.'_;lpshot qur"}%\ﬂ by splitting indices with known “busy” parts: defining
the execution of such programs, the distribution of index. . . oy .
bit of an index value as busy if it varies across concurrent

values of those grid dimensions issued by all active threa; Shamic instances that index exoression. and shift those bu
within the system would not directly depend on these thiea y P ' ¥

I ; . .parts to the lower-order address bits by a series of indepswa
indices or the blocks they are grouped in. An index expres3|§nd the number of busy bits of an index: log, (span (i)). We

generally belongs to one or more categories above; e.g. an . : S - . .
index liket hr ead! dx. x+bl ockl dx. x * bl ockDi m x ¢! informally define this kind dfyout tiling operation being

applied on an indeX € I and a dimensio € D as splitting
belongs to both Category T and Category B. | and D at bit position j and k wheré < k& < j and shift

L., and D;.;, to another position in the index and dimension
C. Span of Indices vectors by a series of swaps with neighboring indices and

The second step is to estimate the run-time value rangdénensions. o _
or span for each category of index. For instance, Category | Y& model the problem of deciding the number of index
indices are separated into invariant and variant by amagyziPits to be tiled for highly interleaved DRAM systems, such
their span. In CUDA, the span of Category T indices ar@S thle GP_U gl_obal memory, as an optimization problem. The
simply determined by the kernel configuration parametds: §0@l is to tile dimensions with spans larger than one, andemak
thread indices within a block are represented and schedufBgse tiled dimensions fit the DRAM channel and intra-channe
concurrently to an SM. The span of concurrent block indicé@terleavmg charactenstlcs.as well as the _DRAM burst.size
we can approximate from the block scheduling policy and In fqllowmg text, thg variable representing the number of
number of concurrent blocks, described in more detail Jatd#ed bits of an index is expressed as:
We do not expect strong correlation in the program counter maximize
values of threads in different thread blocks, so instandes o z = Cthreadldx.x; + CathreadTdx.y, +
Category | indices issued across CUDA warps usually don't Csthreadldx.z; + CiblockIdx.xs +
have statically predictable locality. Hence, for Categdry Csblockldx.y,
indices we assume a uniform distribution of possible index subject to
values. p = threadIdx.xt + threadIdx.y, +

For CUDA, spans for thread (Category T) and block (Cat- threadIdx.z¢ + blockIdx.xy +

egory B) indices are defined as: blockldx.y, + span(It)
and bounds of variables

span(threadIdx.d) = blockDimd :d € {x,y,z} p < #SterringBits — log, (%)
span(blockIdx.x) = min(#ActiveBlock,gridDim.x) threadldx.x; > logz2(64/sizeof (T'))
ActiveBlock threadIdx.x¢ < |logz(span(threadIdx.x))|
span(blockIdx.y) = — ————— 0 < threadIdx.y, < |logz2(span(threadIdx.y))|
gridDim.x 0 < threadIdx.z; < |log2(span(threadIdx.z))|

0 < blockIdx.xs < |loga(span(blockIdx.x))]

Where # Active Block is the number of blocks will be ac- 0< blockIdx.y, < |loga(span(blockIdx.y))]
tively executing in the entire system, which can be deteechin where I; represents the Cat. | index, if applicable.
statically from the compiled code’s resource usage and theThe objective function means that we maximize the number
device parameters [19]. For example, when a kernel witi busy bits of indices tiled to the steering bits, according
32 x 4 x 1 thread block dimensiond,00 x 100 thread grid, weights representing the relative importance of Cat. T and
executes on a device that can support 90 concurrent blookst. B indices. The positive coefficients; to C3 depend
span(threadIdx.x) = 32, span(threadIdx.y) = 4 and on scheduling rules within an SM?; and C5 depend on
span(threadIdx.z) = 1, span(blockIdx.x) = 90, and how thread blocks are issued across SMs. Our heuristic
span(blockIdx.y) = 1. setsC5,Cy > C1,C2,C3 > 0, and they are fixed for a

As structured grid codes have a consistent set of classidiven architecture. This heuristic comes from an assumptio
cations in indexing expressions in grid-accessing exess that different thread blocks are more likely to be executed
we can depict the layout-decision procedure as followsemivsimultaneously than threads in the same block but in differe
an indexi extracted from grid-accessing expressions of \warps, since thread blocks could be distributed to differen
grid annotated for transformation, an ideal flattening woulSMs while threads in the same block but in different warps

are executed in turns on the same scheduled SM. So we favor

solutions that allocate more bits to block indices than tedd %
indices. This heuristic also assumes that block indicem fro i L

thread block dimensions are enumerated and scheduled in row 58 [catimaees |,
major order. _

The constraint models the interleaving constraint: since 1 Lower Bits of Tiled Cat. T Indices t
steering bits are bits 13-6 and bits 5-0 help form a DRAM
burst, all tiled dimension should not go beyond that limit.
We shall also tile entirgpan(I;) based on the assumption of
uniform distribution of Category | indices, and expect #os
indices to be interleaved by the hardware.

The lower bound ofthreadldx.xreflects how the global
memory coalescing hardware works; we would tile lower-
ordered bits of this index that would vary across threads in
a CUDA warp to offsets within the 64-bytes segment.

The upper bounds of thread and block indices indicate the
maximal degree of interleaving that each of those indices interleaving.
would need. Effectlvely_, if at run time an mdex eXpression , For thread indices, tile in the warp forming order.
would have2” consecutive values, and that index is used to , Assuming row-majored thread block issuing order, tile
index a single grid dimension in all threads, then we shoeldb 1o X dimension first.
able to interleave those requests with no more tattifferent A tiling scheme that follows those layout tiling rules of the

Lnfrlfﬁvef? me_mor;ijregtlons. '.:é)r n%n-po;{\ll_er-?f-twofspans, index classes may look like Figure 5. This figure represents
ake the floorin order to avoid under-utiization of SOMe G, individual bits in the flattened offset come from diffete

thosg regions. . . .) classes of indices.
It is worth noting that given this particular GPU architeetu

and constraints obtained from modeling its memory interlea
ing, this optimization problem can be solved greedily as e{I:I
the coefficients in objective function are positive. Sotitgr ~ The following example is an LN-CUDA implementation of
from the index with largest coefficient in objective funetjo @ 7-point stencil code kernel that solves a 3D heat equation
we tile all its bits until hitting the upper bound, then pidiet [22];
second largest one, and so on.

Bits that help form
DRAM burst

teering
Bits

Fig. 5: Typical Data Layout in terms of Index Classes

« Tile Category | indices after tiling all tiled thread/block
indices, because Category | indices are not functions of
thread/block indices and their value distributions areemor
likely to depend on program counter. It is thus considered
less likely to be contiguous across requests and should not
be tiled to the bit range that is being used by intra-channel

An Example of Data Layout Transformation

Listing 1: 7-pt 3D heat solver in LN-CUDA
/! Declare A0 and Anext as 3D

. ; /! variable—length arrays
E. Order of Tiled Indices __global__ void heat kernel(float fac,

After the optimal bit allocation of each tiled index has been int nx, int ny, int nz,
f d he di . in th f dfi . float AO[nz][ny][nx],
ound, we arrange the dimensions in the transformed flatteni /o4t Anext[nz][ny][nx])

function based on the following partial order: {
int i = threadldx .x+1, j = blockldx .x+1;
T : threadldx.xp, 1) int k = blockldx .y+1;
Ideyg < Idxyp, (2)
blockIdx.dp < threadldx.dp (3) /1 Access in FORTRANike form which
Catl < Idzp, (4) // is then converted to LNF
threadIdx.y, < threadldx.xp (5) Anext[k][j][i] = 0.8f/6.0f =* (
threadldx.zp < threadldx.y, (6) AO[k + 2][j1[i] + AO[k — 11[jI[i] +
blockIdx.y, < blockIdx.xp (7) AO[K][j + 1][i] + AO[KkI][j — 2][i]] +
AO[K]I[jIlT + 1] + AO[K][jI[i — 1])
Where Idz € {blockIdx.d, threadldx.d},d € {x,y,z}, + 0.2f « AOLKI[jI[i];

p € {L,H}, Idry and Idz; corresponds tddzy,;q,,) and
Idz (145, —1.0), respectively iffdz; > 0. Catl refers to Category And given the following thread grid information:

I indices. o . blockDim.x = 254; gridDim.x = 254
Order 1 reflects the hardware limitation that in order to get gridDim.y = 126; Occupancy = 1.0

full coalescing within a half-warpthreadldx.xmust l_Je tile(_j The spans of thread grid indices are then computed:
as the lowest bits of the flattened offset. Order 2 is obvious:

“pusy” bits of an index should be mapped to lower bits in 3’;‘;;‘&3{2?;%32:3z?;‘thread blocks/SMc #51)
flattened offset than their counterparts. Order 3 to 7 are the %gri dDi m x = 120

heuristics we employ: span(blockIdx.y) =1

« Arrange thread indices first, then block indices. RequestSo the three subscript expressions used to ind@xand
from different SMs are thus likely to be issued to difAnext are of Category-B, Cat. B, and Cat. T respectively,
ferent DRAM channels, rather than to same channel bwith their spans being 1, 120, and 254. The solution of the
different ports. optimization problem stated in section V-D suggests tiling

7 bits of the x dimension, and 5 bits of the y dimensiorthe structure field index into a higher bit position. We earn
After applying layout tiling according to the tiling abovhe 30% additional performance gained from tiling by making
resulting dimension vectob and flattening function FF for busy bits stay in steering bit position. On the other extreme
Anext and A0 will be: the Heat benchmark’s transformed layout is actually very
close to RML, with only a very small degree of tiling in

- 5 71 95 o7
D (nz, [ny/27], [nx/21], 2°,27) and y introduced. The performance therefore only increases

FF(I,D): Iy x [ny/2%] x [nx/27] x 25 x 27 slightly, as the original layout was quite good for that fmartar
+ Iipg) x [mx/27] x 29 x 27 memory system.
+ 10[17] X 22 X 27 =+ .[1[4:0] X 27

The achieved bandwidth of the transformed code is primar-
ily dependent on the proportion of accesses that are aligned
the transformed layout. It is impossible to force all acesss
to be aligned, as many stencil codes will generate indices of
) _ 1, i+1, andi-1, which cannot all be aligned in any layout.

Table 1ll shows relative speedups of different memont,. o+ system, unaligned accesses essentially use twice th
layouts. LBM is a _CUDA |mplementat!on of SPEC CPU200¢,,nqyyicith necessary, as two bursts are triggered for ordy on
[23] 470',LBM’ which implements Iz?\tt|ce-BoItzmann methog, st size of unaligned data. Of our benchmarks, LBM has
[8]; CFD is a kernel that performs either a red or black swegpg |o\est percentage of unaligned accesses, with 29 aligne
using Gauss-Seidel method; This kernel is from CU-FLOW, 4,4 on1y 10 unaligned accesses per thread. With the inherent
3D Navier-Stokes equation solver. Heat implements a 3D h ste of partially used bursts, the transformed LBM has a
equation solver using the Jacobi scheme, as describ_ed]in [}%\rd theoretical bandwidth limit of 87% of peak. The achive

The last two l_Jenchmarks _represe_nt_ the_ two major poigk,qyidth of the transformed LBM represents 85% of peak
methods for solving PDEs using the finite difference methoﬂandwidth, or 98% of the theoretical bandwidth limit given

LBM is an alternative CFD approach that uses particle-basggia| hurst constraints. The other two applicationsenav

method instead of discretizing the PDE. much higher proportion of unaligned accesses, resulting in
For each of the benchmarks, we first manually convert thg@lor achieved bandwidths.

into layout-neutral form and apply our layout transforroati A
methodology on the main grids on which each benchmaﬁlé
operates. Because our compiler infrastructure does not ¥e
support variable-length array syntax, we use annotations
communicate that information to the compiler. Then in th

potential layout transformation space, manual searchyiep of trading extra address calculation instructions for drett

fo nearby regions on the solution found by our methodologyjeaple bandwidth in such bandwidth-bound situations.
we then compare the baseline layout of each benchmark wn%

two layouts.

+ Io[s.0]

VI. EXPERIMENTAL RESULTS

Iso, our experiment shows that even with extra over-
ad computing memory addresses, the transformed applica-
hs still gained performance by improving the efficiendy o
the memory hierarchy. This highlights both the bandwidth-
Boundedness of the applications themselves, and the tyalidi

VII. CONCLUSION AND FUTURE WORK

TABLE II: Benchmarks and Speedup We have presented a formulation and language extension

Benchmark| Layout Speedup | Bandwidth that enables data layout transformation for structured gri
(GBIs) codes in CUDA. We also benchmarked the GTX280 GPU to
LBM Array of Structures | 1.0 18.10 reveal its DRAM banking and interleaving scheme. Based on
?ththUfes ?jf E’*”ta); g-éé i’iéﬁgo the micro-benchmark results, we developed a layout transfo
ransiormea (auto ™ .
Transformed (manualj 6.60 11950 mation meth_odology that c_an_S|g_n|f|cantIy speed up various
. structured-grid codes by distributing concurrent memagy r
CFD Row Major Layout 1.0 56.63
Transformed (auto) | 1.25 70.93 quests evenly to DRAM channels and banks.
Transformed (manuall 1.30 73.75 Our methodology does not preclude opportunities of ap-
Heat Row Major Layout 1.0 74.31 plying other transformations that aims at improving reuse.
Transformed (auto) | 1.07 79.37 Future work investigating holistic data layout transfotimas
Transformed (manual) 1.08 80.17

addressing temporal locality, spatial locality, and MLH e
paramount to achieving the highest levels of performance fo

Significant speedups are observed from all benchmar!@,portam' bandwidth-bound structured grid applications
ranging from 6.6X (LBM) to 1.07X (Heat) with automatically
derived layout. The performance different between layout- ACKNOWLEDGMENTS
optimized and baseline layout is tied to how far the trans-
formed layout diverges from the baseline. For instance, theThis work was funded by the Universal Parallel Computing
transformed LBM layouts more closely resemble a (tiledresearch Center at the University of lllinois at Urbana-
structure of array form than array of structure form: muc@hampaign. The Center is sponsored by Intel Corporation
of the performance is gained from improved burst-level paand Microsoft Corporation. We would like to thank Chris
allelism due to improved memory coalescing, and swappifpdrigues and Nady Obeid for their comments.

(1]

(2]

(3]
(4

(5]
(6]

(7]
(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]
[22]

[23]

REFERENCES

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. béumls,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. Wili&fns, and
K. A. Yelick, “The landscape of parallel computing researghview
from berkeley,” EECS Department, University of CalifornBerkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Avadalhttp:
Ilww.eecs.berkeley.edu/Pubs/TechRpts/2006/EEC$-2@3. html

K. W. Morton and D. F. MayersNumerical Solution of Partial Differ-
ential Equations: An Introductian New York, NY, USA: Cambridge
University Press, 2005.

J. H. Ferziger and M. Peri€omputational Methods for Fluid Dynamics
Berlin: Springer, 1999.

C. D. Gundolf, C. C. Douglas, G. Haase, J. Hu, M. Kowarkglaind
C. Weiss, “Portable memory hierarchy techniques for PDEess| part
II,” SIAM Newsvol. 33, pp. 8-9, 2000.

J. W. Demmel,Applied numerical linear algebra Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1997.

Y. H. Qian, D. D’'Humieres, and P. Lallemand, “Lattice BGi{odels
for Navier-Stokes equation,Europhysics Lettersvol. 17, no. 6, pp.
479-484, 1992.

Y. Zhao, “Lattice Boltzmann based PDE solver on the GPUgsual
Computing vol. 24, no. 5, pp. 323-333, 2008.

T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. &, “Optimiza-
tion and profiling of the cache performance of parallel ¢attboltzmann
codes,”Parallel Processing Lettervol. 13, no. 4, pp. 549-560, 2003.
G. Rivera and C.-W. Tseng, “Tiling optimizations for 3xientific
computations,” inSCO0: Proceedings of the 2000 conference on Su-
percomputing 2000, p. 32.

S. Sellappa and S. Chatterjee, “Cache-Efficient MddigAlgorithms,”
International Journal of High Performance Computing Applions
vol. 18, no. 1, pp. 115-133, 2004.

Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnaonthy,
J. Ramanujam, A. Rountev, P. Sadayappan, Y. Chen, H. Lin,Tand
f. Ngai, “Data layout transformation for enhancing dataaldg on
nuca chip multiprocessors,” iRProceedings of the 18th International
Conference on Parallel Architectures and Compilation Teghes 2009,
pp. 348-357.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,.LOliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computataptimization
and auto-tuning on state-of-the-art multicore architexg(l in SC08:
Proceedings of the 2008 conference on Supercompufdigcataway,
NJ, USA, 2008, pp. 1-12.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stond.Kirk, and
W.-m. W. Hwu, “Optimization principles and application fmmance
evaluation of a multithreaded gpu using cuda,”Rmoceedings of the
13th Symposium on Principles and Practice of Parallel Pesgming
2008, pp. 73-82.

E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana, “Sgifimizing
memory controllers: A reinforcement learning approac@8fmputer
Architecture Newsvol. 36, no. 3, pp. 39-50, 2008.

T. Moscibroda and O. Mutlu, “Distributed order schedgl and its
application to multi-core DRAM controllers,” iRroceedings of the 27th
Symposium on Principles of Distributed Compufi@g08, pp. 365-374.
O. Mutlu and T. Moscibroda, “Parallelism-aware batctheduling:
Enhancing both performance and fairness of shared DRAMeRyst
Computer Architecture Newsol. 36, no. 3, pp. 63-74, 2008.

J. Shao and B. T. Davis, “A burst scheduling access erord mech-
anism,” in Proceedings of the 13th International Symposium on High
Performance Computer Architectyrd007, pp. 285-294.

V. Volkov and J. W. Demmel, “Benchmarking gpus to tunesk linear
algebra,” inSCO08: Proceedings of the 2008 conference on Supercom-
puting, 2008, pp. 1-11.

nVIDIA, “nvidia cuda programming guide 2.0,” 2008.

L. McVoy and C. Staelin, “Imbench: portable tools forfemance anal-
ysis,” in Proceedings of the 1996 USENIX Annual Technical Conference
1996, pp. 23-23.

nVIDIA, “nvidia geforce gtx 200 gpu architectural owggw,” 2008.

S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelickmpact
of modern memory subsystems on cache optimizations forcisten
computations,” irProceedings of the 2005 workshop on Memory system
performance 2005, pp. 36—43.

C. D. Spradling, “Spec cpu2006 benchmark too8dmputer Architec-
ture News vol. 35, no. 1, pp. 130-134, 2007.

10

